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ABSTRACT
Remote Attestation (RA) of embedded/smart/IoT devices is a very
important issue on today’s security landscape. RA enables a veri-
fier to measures the current internal memory state of an untrusted
remote device (prover). RA helps the verifier establish a static or
dynamic root of trust in prover. Despite much prior work, state-of-
the-art RA techniques unfortunately still lack any solid foundation
and offer no ironclad security, safety or robustness guarantees. This
paper argues that computer-aided formal verification, and synthe-
sis of executables, of RA protocols and hybrid (software-hardware)
architectures is required and currently unaddressed.We believe that
this is achievable with current (computer-aided) formal methods
frameworks and tools, and that this can help advance and mature
RA research if used to establish more rigorous and clear security
arguments. To support our opinion, we highlight several examples
where subtle issues were missed in the design and security analysis
of RA techniques. Despite deceptive simplicity of such protocols,
manual analyses and ad hoc implementations often lead to over-
simplification of (and subsequent glossing over) important details
in the underlying processor and system architectures. Computer-
aided formal verification forces a more scrupulous and disciplined
consideration of such details, since, otherwise, verification simply
fails. The key objective of the research direction we propose is
to increase confidence in correctness and security guarantees of
current and future RA techniques and their implementations.
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1 INTRODUCTION
In recent years, the number and variety of special-purpose comput-
ing devices has grown dramatically, and surpassed general-purpose
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computers. This includes all kinds of smart and embedded devices,
cyber-physical systems (CPS) as well as Internet-of-Things (IoT)
gadgets. They can be increasingly found in various settings, such as
homes, offices, factories, vehicles and public venues, as well as on,
and within, human bodies. They also represent natural and attrac-
tive attack targets for malware [? ? ? ? ]. Unfortunately, security is
typically not the most pressing issue for low-to-medium-end device
manufacturers, due to costs, size or power constraints, as well as
the usual rush-to-market syndrome. It is thus unrealistic to expect
such (especially, low-end) devices to be equipped with means to
prevent attacks. The next best thing is detection of compromise
or malware presence, which typically requires some form of Re-
mote Attestation (RA). RA is a security service that measures
the current internal memory state (i.e., RAM and/or flash) of an
untrusted remote device (prover or Prv) by a trusted entity (verifier
or Vrf). If Vrf detects malware presence, Prv’s software can be
re-set or rolled back and out-of-band measures can be taken to
prevent similar infections. In general, RA helps Vrf establish a
static or dynamic root of trust in Prv and can be used to construct
other security services, such as software updates [? ], and verified
reset and secure erasure [? ].

Overall understanding of RA requirements, limitations, and chal-
lenges has matured in recent years due to the development of, and
attacks on, RA techniques. (See Section 2.2). Despite substantial
progress, an important missing component is the high-assurance
and rigor derivable from utilizing computer-aided formal verifi-
cation, and synthesizing correct-by-construction executables, to
guarantee security and correctness of RA designs and implementa-
tions.

2 BACKGROUND AND PRELIMINARIES
This section overviews RA concepts and prior results, followed
by some background on computer-adided verification in the RA
context.

2.1 Overview of Remote Attestation
As mentioned earlier, RA allows a trusted verifier (Vrf) to remotely
measure the memory state of an untrusted remote device (Prv). To
start, we focus on the original RA approach of measuring instanta-
neous integrity of Prv’s memory region; other run-time attestation
flavors [? ? ] are left for future research. [R31B-C3] We also assume
thatRA requirements as well as correctness and security definitions
are complete and formally modeled, perhaps even manually. This
can be achieved by modeling the device/architecture being attested,
and tying it to a security definition (e.g., via a security game) that
captures RA requirements. Such security definitions must precisely
capture the requirements. This is indeed the approach used in re-
cent work that attempted to develop a formally verified hybrid RA
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Figure 1: Overview of an abstract RA protocol

design [? ]. Our goal is to ensure that a given RA design and its
implementation satisfy security requirements. Verifying complete-
ness of initial requirements and security definitions is an important,
albeit orthogonal, issue, and is thus out of scope of this paper.

RA is typically realized as a challenge-response protocol, as
shown in Figure 1:

(1) Vrf sends an attestation request containing a challenge
(Chal) to Prv. It may contain a token derived from a se-
cret for Prv to authenticate Vrf. (This last step is used only
ifVrf authentication is desired.)

(2) Prv receives the request, optionally verifies it, and computes
an authenticated integrity check over the memory to be at-
tested and the Chal. The target memory region might be
either pre-defined, or explicitly specified byVrf in step (1)
and included in the measurement. In the latter case, authen-
tication ofVrf in step (1) is important for overall security of
Prv, since the request can specify arbitrary memory regions.

(3) Prv returns the result toVrf.
(4) Vrf receives the result and checks whether it corresponds

to a valid memory state.
The returned measurement, i.e., challenge-based authenticated in-
tegrity check, can be realized as a Message Authentication Code
(MAC) over Prv’s memory. Computing a MAC requires Prv to
have a unique secret key (K) shared withVrf.1 K must reside in
secure storage, inaccessible to all software running on Prv, except
for trusted and immutable attestation code – AttCode. Since most
RA threat models assume fully compromised software state on Prv,
secure storage typically implies some level of hardware support.

There is a range of RA adversarial models. The most common is
a remote adversary, i.e., capable of remotely introducing malware
onto Prv. Malware is assumed to have complete control of Prv’s
memory and software. On the other extreme is a physical adversary
that can capture, probe, disassemble and/or modify Prv. We refer
to [? ] for a complete treatment of RA adversarial models. In this
paper, we only consider a remote adversary.

2.2 Remote Attestation Landscape
Prior RA designs fall into one of three categories: software-based,
hardware-based, and hybrid. Software-based (or timing-based) RA
is the only viable approach for legacy devices with no hardware
security features. Without hardware support, it is (currently) un-
clear how to guarantee thatK is inaccessible to malware. Therefore,
security of software-based approaches [? ? ] is loosely attained (or
1Alternatively, Prv could have a unique private key corresponding to a public key
held by Vrf. Due to higher costs of public key cryptography, and low-end nature of
considered devices, we ignore this option, although the discussion below still applies.

claimed) by setting threshold communication delays between Vrf
and Prv. Software-based RA is unsuitable for multi-hop and jitter-
prone communication, or settings where a compromised Prv is
aided (during attestation) by a more powerful accomplice device. It
also requires strong constraints and assumptions on the hardware
platform and attestation usage [? ? ]. Hardware-based approaches
require Prv’s attestation functionality to be housed entirely within
dedicated hardware, e.g., SGX [? ] or TrustZone [? ]. Such hardware
features are too expensive for low-end devices, in terms of physical
area, energy consumption, and actual cost.

While both hardware- and software-based approaches are not
well-suited for settings where low-end devices communicate over
the Internet, which is often the case in the IoT world, hybrid RA,
based on HW/SW co-design, is a more promising approach. Hybrid
RA aims to provide the same security guarantees as hardware-based
techniques, yet with minimal hardware features. SMART [? ] is the
first hybrid RA architecture targeting low-end MCUs. In it, AttCode
is implemented in software and housed in ROM. SMART ’s small
hardware footprint guarantees that: (1) AttCode can not be modified,
(2) AttCode has exclusive access to K , (3) no part of K remains in
memory after AttCode terminates, and (4) RA runs atomically, i.e.,
from the first instruction until the last, without interrupts. Property
(4) is essential to prevent malware from relocating itself during
attestation to evade detection. It also mitigates Return-Oriented
Programming (ROP) and similar gadget attacks. A systematic anal-
ysis of these properties and their corresponding requirements is
attempted in [? ], via systematic treatment of RA, starting with
a precise definition of the desired service and proceeding to its
systematic de-construction into necessary and sufficient properties.
These properties are then mapped into a (allegedly minimal) collec-
tion of hardware and software components that result in a secure
RA architecture.

Despite much progress, a major missing aspect of RA research is
high-assurance and rigor obtained by using computer-aided formal
methods to guarantee security of a concrete RA design and its
implementations. We believe that verifiability and formal security
guarantees are particularly important for hybrid RA designs aimed
at low- and medium-end devices, due to their rapid proliferation.
Massive scale of their deployment translates into equally massive
coverage and potentially global impact of attacks. This serves as
the main motivation for carefully constructing formally verified
RA architectures.

3 COMPUTER-AIDED VERIFICATION & RA
Despite their deceptive simplicity, designing provably secure RA
protocols and architectures is challenging. The RA literature in-
cludes several protocols and architectures which missed subtle
issues that undermine claimed security and correctness guarantees.
RA is an ideal first candidate for computer-aided formal verification
and synthesis since it only involves two communication rounds and
basic cryptographic primitives, e.g., HMAC. As mentioned above,
complexity of formal protocol verification quickly becomes prohib-
itively costly as complexity of underlying cryptographic primitives
grows. Given the current state of formal verification tools, RA is
within reach, as recently demonstrated in VRASED [? ]. VRASED
verifies hardware and software components separately. Whereas,
ideally both would be verified using the same framework and tools,
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in order to obtain a complete computer-aided proof, which increases
confidence in its correctness.

3.1 Computer-aided Formal Modeling &
Verification

Up to mid 2000-s, computer-aided formal verification and synthesis
tools could not handle cryptographic constructs, especially those
involving both hardware and software, as is the case with hybrid
RA. This changed in the past decade, after verification of several
cryptographic primitives and protocols has been demonstrated, e.g.,
HACL* [? ] . Formal modeling and computer-aided verification of
security properties is considered [? ] to be a key research challenge
for the next century. Specifically, security modeling is defined [?
] as a generalization of the way cryptography uses precise threat
models and security conditions. It is argued that this approach
should be used to capture a growing range of security mechanisms
encompassing central aspects of cryptography, network security,
access control, software system security, hardware security, as well
as other branches of the field. While this suggestion may seem ob-
vious, it is not always followed. Lack of rigor and formalization has
historically yielded some insecure designs. A prominent example
[? ] is the process of designing authenticated encryption – a form
of encryption that simultaneously ensures both confidentiality and
integrity. The issue is the order in which the encryption and au-
thentication operations are performed, such that the combination
is secure for any encryption and MAC scheme, as in [? ].

There are only a few efforts for formal verification and synthe-
sis of executables in the RA context. The first, HYDRA , utilizes
formally verified building block components in a hybrid RA ar-
chitecture HYDRA [? ]. HYDRA builds upon the formally verified
seL4 [? ] microkernel to obtain key-protection and memory isola-
tion features that were previously enforced by hardware controls
in SMART [? ]. However, HYDRA does not formally verify neither
hardware modifications nor the software implementation of the
attestation executable itself.

The second attempt [? ] takes the initial step towards complete
formal verification ofRA by designing and verifying an architecture
called: Verifiable Remote Attestation for Simple Embedded Devices
(VRASED). It instantiates a SMART -based hybrid RA co-design
and develops several hardware modules verified by modeling their
Finite State Machines (FSMs) in Linear Temporal Logic (LTL). Ver-
ified LTL modules are automatically synthesized into Verilog to
instantiate components realizing required RA properties, which
were determined in previous work [? ]. (See Section 2.2). VRASED
applies these automatically synthesized small hardware modules to
the target MCU, and couples themwith a ROM that houses RA code
implemented using a formally verified binary of a SHA-256-based
HMAC from the HACL* library [? ].

3.2 Subtle Issues in Prior RA Designs
We discuss here issues in prior RA designs, which undermine secu-
rity and/or correctness. We argue that computer-aided verification
can help discover such problems during the development phase.

(1) Temporal Consistency:When an integrity-ensuring func-
tion (such as a MAC) is computed over a relatively large
input, stability of that input during the entire computation
is referred to as temporal consistency. This notion was first

identified in [? ]. Lack of temporal consistency in implemen-
tations of MAC or hash functions can lead to non-sensical
results and security violations in protocols and systems us-
ing them, e.g., RA, verifiable re-sets as well as secure update
and erasure. Standard correctness and security definitions
of integrity-ensuring functions typically assume that input
data (regardless of its size) remains consistent throughout
computation. [? ] showed that temporal consistency may
be lost if another process interrupts execution and modifies
portions of input that, either or both: (1) were already pro-
cessed, or (2) were not processed yet. Such subtleties and
discrepancies between (implicit) assumptions in definitions
and implementations can be a source of inconsistencies, in-
deed, temporal inconsistency exists in the TyTan [? ] and
TrustLite [? ] designs as discussed in [? ].

(2) Atomicity of Execution: RA designs, especially of the hy-
brid variety, often make assumptions about the underlying
main processor architecture and/or instruction set. A com-
mon assumption, starting with SMART [? ], is that interrupts
can be (instantaneously) disabled by AttCode on Prv. This
assumption seems reasonable at a first glance. However, in re-
cent work [? ], it was shown that, in some micro-controllers,
the instruction to enable interrupts consumes several clock
cycles and is thus not instantaneous. Hence, this instruction
itself can be interrupted. This turns out to be a very subtle
issue that inhibits some computer-aided verification proofs
from succeeding, and must be handled carefully.

(3) Availability: Attacks on availability can be devastating, es-
pecially when RA is deployed in settings where Prv serves
a real-time or time-critical purpose. For example, SMART [?
] includes an API for invoking arbitrary code (specified by
Vrf) in RAM. This API requires specifying the initial mem-
ory location of that code (return_address), so that AttCode
can jump there after completion. The intent is to use RA as
a building block to construct other services, such as secure
erasure, reset, and update. It was later discovered that this
feature can be abused and cause Prv to be stuck in a loop
attesting itself indefinitely. This is because the ROM-resident
AttCode does not check whether return_address is not the
entry point for the AttCode itself. This issue, coupled with
other checks (e.g., only executing AttCode from the begin-
ning) to enforce uninterrupted atomic execution, can lead
to a major denial-of-service vulnerability. Whereas, formal
verification of correctness of the design would have caught
this issue, since termination would not have been attainable
for this corner case.

4 MOVING FORWARD
Based on the discussion above, we identify the following topics
necessary to advance state-of-the-art in RA research.

(1) Proving Completeness of RA Properties: Properties re-
quired by an RA architecture were previously analyzed and
mapped to components [? ] (see Section 2.2). An open is-
sue is how to prove completeness and minimality of these
properties and components. Proofs of architectural minimal-
ity have not been attempted before. Nonetheless, they are
highly desirable, especially, in hybrid RA designs, the main
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claim-to-fame of which is minimal hardware requirements
and modifications to existing hardware, which results in low
overall costs and makes them suitable for low-end devices.

(2) Computer-aidedVerification ofRADesigns:While comp
uter-aided verification of cryptographic protocols is still in
its early stages, there have been significant developments in
recent years. One example is the maturing of EasyCrypt [? ],
which now allows complex proofs that inter-leave program
verification and formalization of mathematical theories (e.g.,
group theory). EasyCrypt served as the foundation of re-
cent results [? ] formally proving security of two protocols
based on garbled circuits. We encourage applying EasyCrypt
to verify RA protocols, and (ideally) proving composition
properties, so as to leverage such work for group settings
as proposed in (4) below. In addition, one should consider
interactive theorem provers such as PVS [? ] and Coq [?
] for verifying software/hardware co-designs to obtain an
end-to-end mechanically verified RA architectures.

(3) Correct-by-Construction Implementations of RA: As
mentioned in Section 3, VRASED [? ] took the first step to-
wards formal verification of RA by designing and verifying a
hybrid RA design for low-end embedded systems. VRASED
only synthesized correct-by-construction hardware mod-
ules and did not attain the same for the software portion.
VRASED relies on a previously verified implementation of
SHA-256 based HMAC – HACL*[? ] – for the RA executable.
Previous work showed [? ] that it is possible to synthesize
implementations of formally verified cryptographic proto-
cols using EasyCrypt and other toolchains. We suggest the
same for RA executables and services using them.

(4) Heterogenous Prv & Group Settings: We are unaware
of any systematic analysis of properties and requirements
for performing RA in group settings with both homoge-
neous and heterogeneous devices. A first step could be to
extend previous single-prover single-verifier setting require-
ments and properties [? ] to groups. Then, similar to (1) and
(2) above, computer-aided formal modeling and verification
could be used to prove completeness and minimality of these
properties. Finally, as outlined in (3), correct-by-construction
executables could be extracted from formally-verified proto-
cols for group settings.
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