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SNUSE: A Secure Computation Approach for
Large-Scale User Re-Enrollment in Biometric

Authentication Systems
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Abstract—Recent years have witnessed an increasing demand for biometrics based identification, authentication and access control
(BIA) systems, which offer convenience, ease of use, and (in some cases) improved security. In contrast to other methods, such as
passwords or pins, BIA systems face new unique challenges; chiefly among them is ensuring long-term confidentiality of biometric
data stored in backends, as such data has to be secured for the lifetime of an individual. Cryptographic approaches such as Fuzzy
Extractors (FE) and Fuzzy Vaults (FV) have been developed to address this challenge. FE/FV do not require storing any biometric data
in backends, and instead generate and store helper data that enables BIA when a new biometric reading is supplied. Security of FE/FV
ensures that an adversary obtaining such helper data cannot (efficiently) learn the biometric. Relying on such cryptographic approaches
raises the following question: what happens when helper data is lost or destroyed (e.g., due to a failure, or malicious activity), or when
new helper data has to be generated (e.g., in response to a breach or to update the system)? Requiring a large number of users to
physically re-enroll is impractical, and the literature falls short of addressing this problem. In this paper we develop SNUSE, a secure
computation based approach for non-interactive re-enrollment of a large number of users in BIA systems. We prototype SNUSE to
illustrate its feasibility, and evaluate its performance and accuracy on two biometric modalities, fingerprints and iris scans. Our results
show that thousands of users can be securely re-enrolled in seconds without affecting the accuracy of the system.

Index Terms—Biometrics, Authentication, Secure Computation, MPC.
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1 INTRODUCTION
Current Biometrics-based Identification and Authentica-
tion (BIA) systems1 [1], [2] typically store user’s reference
Biometric Templates (BTs), such as fingerprint minutiae
points and/or iris codes, in the backend. If the backend
is compromised or breached, sensitive biometric data
of a large number of users may be leaked, enabling
adversaries to impersonate users and circumvent BIA
systems. For example, in 2015, the Office of Personnel
Management was compromised and led to the leakage
of 5.6 million fingerprints of federal workers that applied
for security clearances in the United States of Amer-
ica [3].

In order to protect BTs, typical solutions use secure
elements or encryption. Secure elements are applicable
when matching is performed against a few biometrics
(e.g., the Touch ID technology on iPhones [4]) but do
not scale to a large number of biometrics. Encrypting
BTs also brings challenges: (1) BTs have to be decrypted
to match newly supplied biometric readings during
authentication, (2) decryption keys associated with the
encrypted templates have to be stored somewhere close
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1. We omit explicitly mentioning access control, we assume it
implicitly when authenticating an individual and then granting
access based on the authenticated identity.

by (logically and maybe even physically), and (3) when
the backend is compromised or breached, the encrypted
templates may be leaked. As reference BTs have to be
protected for the lifetime of individuals, it is important
to select algorithms and key sizes that remain secure
for several decades (say, 40-50 years), which remains a
challenging task.

A third cryptographic approach to address the above
shortcomings and to construct secure BIA systems has
been proposed in the form of Fuzzy Vaults (FV) [5] and
Fuzzy Extractors (FE) [6]. FE and FV alleviate the need
to store BTs in the system’s backend. They enable one
to perform matching during the normal operation of
a system by using some Helper Data (HD), extracted
during the user’s initial enrollment into the system.
The HD securely encodes2 a secret, or cryptographic
key, that cannot be retrieved unless a biometric sample
similar enough to the one used to generate this HD
is provided as input. Therefore, the BIA system can
determine if a new reading of a biometric corresponds
to the user being authenticated. The security of the ap-
proach stems from the fact that HDs do not convey infor-
mation about the underlying biometric. This guarantee
can be information-theoretic/statistical or computational
depending on the details of the FE/FV scheme.

To deploy this third cryptographic approach at scale,
one has to address the challenge of re-enrollment: in

2. We use the term “encode” loosely as helper data may not actually
encode the secret, but only enable constructing it when the biometric
is also present.
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(a) Initial Enrollment (b) User Authentication

(c) User Re-Enrollment

Fig. 1. Initial user enrollment, user authentication, and user re-enrollment in SNUSE. During regular authentication, the
user interacts with the authentication server only, which stores the HD of all the users and enables recovering the
user’s secret/key when the correct biometric is supplied. When re-enrollment is required, the authentication server
communicates with the re-enrollment servers and uses MPC to compute new HD, which encodes a new secret/key,
from the secret-shared BT. We emphasize that regular authentication does not require involvement of the re-enrollment
servers and, conversely, the re-enrollment phase does not require user involvement.

the lifetime of a cryptographically secure BIA system,
it will be often necessary to re-generate HDs, because
of breaches or to perform maintenance or updates. For
example, a secret key may need to be revoked and
replaced by a fresh one when the HD is leaked, dam-
aged, or corrupted. A second example is when access
control is enforced via encryption. In this case, changing
a given user’s permissions might require changing the
user’s cryptographic keys. In both examples, existing
systems require physical presence of the user to refresh
cryptographic material, which is laborious, slow, costly,
and hence impractical. This problem is currently not
addressed in the literature.

1.1 Contributions
In this work we introduce SNUSE (Secure Non-
interactive User at Scale re-Enrollment), a new non-
interactive approach for secure user re-enrollment that
does not require user involvement, nor storing biometric
templates (BTs) of users, in the clear, nor in encrypted
form, at any single backend server. Instead, SNUSE uses

secret sharing [7] to distribute the original BTs among
several offline components (the exact number of compo-
nents is a configurable parameter), and performs the re-
enrollment in a secure distributed manner by computing
the required Helper Data (HD) generation algorithms us-
ing efficient secure multi-party computation (MPC). This
approach ensures that at no point during the system’s
operation are original reference BTs reconstructed in the
clear at any backend servers. The components storing
shares of BTs can remain offline during normal operation
and thus are inaccessible through the network. When
re-enrollment is required, the components are brought
online and connected to the system for only a brief
period (e.g., seconds).

We envision that SNUSE would be used in industrial,
enterprise, or government settings, where several (e.g.,
thousands) of employees/users are required to authen-
ticate daily. In such a setting there might be several
entry points. For example, an enterprise might use bio-
metrics to control physical access to different buildings.
The users should be able to enroll once and, after that
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point, authenticate from any entry point. The enterprise
wants to be in charge of, and to be able to change,
any cryptographic parameters and access control policies
without requiring participation of users. The employees
do not want their biometrics stored in clear and sub-
ject to breaches or attacks. Conversely, the enterprise
wants to avoid liability of storing thousands of users’
biometrics insecurely. Ideally, all these functionalities
should not impact the underlying biometric matching
accuracy. To achieve these goals the enterprise would
be responsible for deploying one Authentication Server,
for handling normal authentication requests, and a set
of Re-Enrollment Servers, used to store secret shares of
the users’ BTs and to refresh users’ cryptographic secrets
and access control policies.

Figure 1 illustrates the initial enrollment, subsequent
authentication, and re-enrollment phases in SNUSE.
To the best of our knowledge, this is the first ap-
proach amending Biometrics-based Identification and
Authentication (BIA) systems to enable performing non-
interactive user re-enrollment without storing the user’s
biometric template in clear, or encrypted, in any single
component or server. In summary, our contributions are
threefold:
• SNUSE Design: We develop SNUSE, a set of pro-

tocols for secure biometrics-based authentication.
SNUSE relies on Fuzzy Extractors/Vaults to en-
sure the privacy of biometric templates while using
Secure Multi-Party Computation (MPC) to enable
large scale non-interactive re-enrollment.

• Protocol Optimization: To enable SNUSE opera-
tion in large enterprise or industrial settings, we
show how the multi-party computation involved
in SNUSE can be optimized via pre-computation of
multiplication operations in the enrollment phase.
Such optimization allows fast re-enrollment of thou-
sands of users in seconds.

• Prototype & Evaluation: We implement a fully
functioning prototype of SNUSE, including all of
its sub-protocols using the Number Theory Library
(NTL) [8]. Our prototype works with fingerprints
and iris scans. We evaluate our prototype under
different configurations and the results demonstrate
that SNUSE can achieve fast re-enrollment of a large
number of users without affecting the accuracy of
the underlying biometric matching algorithm.

1.2 Organization

Section 2 overviews the building blocks used in SNUSE.
Related research efforts are overviewed in Section 3.
Section 4 presents SNUSE in details. Section 5 discusses
the implementation details of a prototype for SNUSE
that works with fingerprints and iris scans using Fuzzy
Vaults. Experimental results using the prototype are pre-
sented in Section 6. Section 7 discusses SNUSE’s security.

2 BACKGROUND

We here overview SNUSE’s building blocks and intro-
duce the notation that will be used in the rest of the
paper.

2.1 Biometrics-Based Authentication
Biometrics-based authentication systems [1], [2] have
appealing advantages when compared to password-
based or token-based systems. In particular, since the
biometric is already tied to the user, the user does not
have to worry about memorizing or keeping track of
a password/secret or carrying a physical token. During
enrollment into a BIA system, a reference Biometric Tem-
plate (BT), composed of features uniquely identifying
the user, is sampled and stored at an Authentication
Server (AS). Later, when the user attempts authentica-
tion, a biometric sample is collected and the same feature
extraction process is applied to generate a second BT.
This new BT is compared to the one stored at AS and,
if their similarity exceeds a given threshold, the user is
successfully authenticated. Otherwise, user authentica-
tion fails. A feature extraction procedure, applied to a
biometric sample of a user U , results in a BT that can be
represented as:

BTU = {p1, . . . , pM} , (1)

where each pi is a data point representing a unique detail
of U ’s biometric. For example, fingerprint BTs include
Cartesian coordinates and orientation of minutiae, i.e., of
regions in the fingerprint image where fingerprint lines
merge and/or split. Such minutiae points are encoded
as:

pi = (xi, yi, θi) , (2)

where, xi is the x coordinate, yi is y coordinate, and
θi the orientation of the minutiae i extracted from U ’s
fingerprint. Similar methods can be proposed to encode
other biometrics such as iris scans (see Section 5.2 for
one example).

Traditional BIA systems store BTs of thousands (or
even millions) of users in clear [9]. The reason for this
is that each time a biometric is sampled by a sensor, it
is slightly different due to noise. Standard mechanisms
for secure storage of passwords (e.g., salted-hashing)
cannot match two noisy readings of the same biometric
because they are not exactly the same. Unfortunately,
the advantages of biometrics come with a high risk; if
the leaked biometric’s modality is stable, leakage of a
user’s biometric at any point in time affects security of
all authentication systems using this biometric for years.
Consequently, protecting the confidentiality of biometric
data is of utmost importance.

As discussed in Section 1, Fuzzy Extractors (FE) and
Fuzzy Vaults (FV) are cryptographic schemes that use
an input BT to (i) generate Helper Data (HD), which
encodes a secret k; and (ii) ensure that the HD does not
reveal anything about the BT or k, unless prompted with
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(a noisy version of) the same biometric used to generate
the HD. Note that k can be an arbitrary secret and not
necessarily a symmetric key. In current approaches, the
secret k stored in the HD cannot be refreshed without
requiring the physical (or remote) presence of user for
the re-enrollment process in which a new biometric
sample is collected and new HD is computed for the
new secret. This manual approach does not scale, as re-
enrolling thousands (or more) users is often impractical,
or at best very laborious. In this paper we propose an
MPC-based solution that enables large-scale automatic
re-enrollments.

2.2 Secret Sharing
In K-out-of-N secret sharing [7] a dealer distributes
shares of a secret among N parties such that subsets
of K or more parties can recover the secret. However,
knowing up to K − 1 shares leaks no information about
it. In SNUSE, we will generate N shares of a biometric
template and store them on N re-enrollment servers.
Given a secret X , let [X]j denote the j-th share and
denote the generation of N shares of X by:

{[X]1, . . . , [X]N} ← X . (3)

Denote the reconstruction of secret X from K shares by:

X ← {[X]1, . . . , [X]K} . (4)

In Shamir’s (K,N) secret sharing scheme [7] over a
finite field F, one randomly generates the coefficients of
a polynomial P of degree d = K − 1. The independent
term a0 is then set to the secret X , and one can generate
N secret shares S = {(i, P (i))}Ni=1. Since P has degree
K − 1, K points in S are enough to interpolate P and
reconstruct its coefficients, including the secret a0 = X .
A set of L < K shares does not reveal any information
about X because there are multiple polynomials of de-
gree K that can be constructed from these points.

Summary of Assumptions and Guarantees: Shamir’s
secret sharing is information theoretically secure. In a K-out-
of-N scheme, it is guaranteed that less than K shares of the
secret leak no information about it. Conversely, K or more
shares can be used to completely recover the secret.

2.3 Secure Multiparty Computation
Secure Multi-Party Computation (MPC) protocols en-
able mutually distrusting parties to jointly compute a
function f of their private inputs while revealing no
information (other than the output of f ) about their
inputs to the other parties [10].

In standard algebraic MPC protocols, each party usu-
ally generates shares of its input (using, for instance,
Shamir’s secret sharing scheme) and distribute one share
to each party. A key observation is that if one is able to
compute both addition and multiplication on the shares,
such that the resulting shares can be combined into the
correct result of the operations, one can implement any

function f from these two basic operations. Different
schemes were proposed to compute addition and mul-
tiplication over private inputs [11]–[15]. Nevertheless,
most of them share the following common characteristics
in the computation of these operations:

• Addition of secret shares can be computed locally.
To that purpose each party computes addition of
its own secret shares. The N local results, once
combined, yield the result of an addition of the
actual secret(s).

• Multiplication of secret shares requires communica-
tion. Even though different schemes exist, most re-
quire parties to broadcast an intermediate (blinded)
result during the computation of multiplication,
such that individual shares of the multiplication
result can be correctly computed.

We do not specify details of the multiplication sub-
protocols and we refer the reader to [12], [13] for further
details. The takeaway is that multiplication requires
communication between parties, and in practice the
overhead to multiply is usually orders of magnitude
higher than the overhead of addition. In our design
we take advantage of the unique characteristics of a
biometric enrollment system to reduce the number of
multiplications to a minimum (sometimes even eliminat-
ing it), allowing cost-effective scalable MPC-based user
re-enrollment.

Summary of Assumptions and Guarantees: MPC
assumptions and guarantees vary depending on the specific
MPC scheme used. In this work we focus on the honest-but-
curious (HBC) threat model with honest majority, in which
corrupted parties might collaborate to learn private inputs
of other parties, but they do not deviate from the protocol
specification. The scheme remains secure if the number of
colluding parties is smaller than half of the total number of
parties.

2.4 Fuzzy Vault Scheme

Fuzzy Vaults (FV) [5] are designed to work with BTs
represented as an unordered set of points as shown in
Eq. (1). Given a user’s biometric template (BTU ), they
hide a secret k generating a correspondent helper data
HD. The secret can be, for instance, private data or
a cryptographic key. The scheme consists of two algo-
rithms: generation (FVGEN ) and secret reconstruction
(FVOPEN ), which can be informally defined as follows:

• FVGEN : receives as input k and BTU . Uses BTU and
k to generate a Helper Data HD, which encodes the
secret k without revealing information about neither
k nor BTU :

HD = FVGEN (BTU , k) (5)

• FVOPEN : receives as input HD and BT ′U . Retrieves
k from HD if, and only if, BT ′U is a template
extracted from the same biometric as BTU , i.e., the
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template used as FVGEN ’s input during HD’s gen-
eration. In other words, given a distance function D
defined over some metric space, and a threshold w:

FVOPEN (BT ′U , HD) =

{
k if D(BTU , BT ′U ) ≤ w

⊥ otherwise
. (6)

The threshold w is a security parameter that allows
to control the trade-off between minimizing false
acceptance (revealing k to the wrong user) and false
rejection (refusing to reveal k to the rightful user).

In the FV scheme of [5], FVGEN algorithm starts by
selecting a polynomial P of degree d defined over a field
GF (2τ ) and splitting k into the d+1 coefficients a0, . . . , ad
of P . The resulting polynomial is defined as:

Pk(x) =

d∑
i=0

aix
i (7)

where the coefficients {a0, . . . , ad} are generated from k
and can be used by anyone to reconstruct k. Since P is
defined over GF (2τ ), each coefficient represents τ bits;
this implies that the size is limited to (d+1)×τ bits. After
embedding k as the coefficients of Pk(x), each of the M
data points in BTU is evaluated on the polynomial Pk(x)
generating a set of points in a two-dimensional space:

LP = {(p1, Pk(p1)), . . . , (pM , Pk(pM ))} . (8)

Note that the field must be large enough to encode
a data point from BTU as a single field element. The
resulting set LP contains only points in the plane that
belong to the polynomial Pk(x). In addition to LP , a set
of chaff points LS of size S � M is generated by ran-
domly selecting pairs (rx, ry), where rx and ry ∈ GF (2τ ).
It is worth noting that the rx points should be sampled
from a distribution indistinguishable from that of real
data points (p1, . . . , pM ) of the given biometric modality
(e.g., fingerprints, iris scans, etc). This step results in:

LS = {(rx1, ry1), . . . , (rxS , ryS)} (9)

Finally, LP and LS are shuffled together using a
random permutation π and the result is included in the
HD. The HD also includes the set of public parameters
Φ = {F, d,M,H(k)}, where F is the field in which Pk(x)
is defined and d is Pk(x)’s degree, M is the size of BTU ,
i.e., the number of points in the HD that belong to Pk(x),
and H(k) is a cryptographic hash of the secret k allowing
one to verify if the correct secret was reconstructed using
FVOPEN .

HD = {π(LP ∪ LS),Φ} (10)

The key idea behind security of the FV scheme is that
with d+1 distinct points (pi, Pk(pi)), one can interpolate
Pk(x), retrieve its coefficients and thus recover k. How-
ever, finding which d+ 1 points to interpolate out of the
M +S in HD is hard if M +S is sufficiently larger than
d.

When attempting to reconstruct k from the HD using
a new biometric reading BT ′U , the FVOPEN algorithm
will use a distance function (which must be defined
according to the biometric type) to select, out of the
M+S points in the HD, the M points that are the closest
matches to the points in BT ′U . If, out of the M selected
points, at least d+ 1 points are points that belong to the
original LP , then the algorithm will be able to interpolate
the correct polynomial and recover k. To verify that
k was correctly recovered, the algorithm hashes the
result and compares it to H(k), which was published
together with the HD. If less than d + 1 correct points
are among the M points selected via distance matching,
no interpolation with combinations of d+1 points out of
M will yield a match in the hash, because Pk(x) will not
be interpolated correctly. Therefore, FVOPEN will reject
BT ′U .

Note that the FV scheme does not rely on the order of
the elements in BTU and BT ′U and does not require all
points to be present in both templates. Instead, d+1 data
points in BT ′U must be close enough to points in BTU .
In that sense, the polynomial degree d acts as a security
parameter that allows calibration of the scheme to reduce
false acceptance by increasing the required number of
matching data points.

Summary of Assumptions and Guarantees: The se-
curity of FV relies on the infeasibility of the polynomial
reconstruction problem [16], and the inability to distinguish
the statistical distribution of minutiae from that of chaff points.
The degree d of the polynomial used to encode k determines
the minimal number coincidental minutiae (in BT and BT ′)
that are necessary to reveal k.

3 RELATED WORK
New attack vectors emerge continuously with the in-
creasing ubiquity and availability of computing devices
and resources, such as Internet of Things (IoT) gad-
gets and cloud computing technologies. Securing this
new computing ecosystem poses unprecedented chal-
lenges [17]. To leverage these new services securely,
one must address the problems of user [18], [19] and
device [20]–[22] authentication, which are still challeng-
ing [23], [24]. Biometrics represent an appealing ap-
proach for user authentication and have been widely
investigated over the past decade [25]–[28]. This includes
several proposals for interesting and unconventional
biometric modalities [29], [30]. Nonetheless, due to their
unique challenges [31], biometrics still represent an ac-
tive research topic.

A study of security and privacy challenges facing bio-
metrics [32], especially iris scans, investigated suitability
and viability of relying on them as the sole method for
identification and authentication. The results of the study
in terms of accuracy and entropy were both positive
and encouraging. The first Fuzzy Vault (FV) scheme was
developed in [33]. It was later implemented and tested
with actual fingerprint biometrics in [34]. Fuzzy Extrac-
tors (FE) were formalized in [35], and further applied to
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biometrics in [36]. Most FE schemes provided statistical
or information-theoretic security, until the scheme of [37]
was developed; this computational FE scheme relies on
hardness of the Learning with Errors (LWE) problem. Re-
usability of FE was first studied in [38], where a reusable
FE scheme was first formalized, and then developed for
specific attacks. Re-usability enables one to extract multi-
ple helper data from the same biometric without leaking
any additional information. Not every FE/FV can be
reused and still ensure security as illustrated in subse-
quent research [39], [40] which analyzed re-usability of
multiple FE schemes and demonstrated attacks against
them. Finally, indistinguishability based definitions for
re-usability were presented [41] and theoretical analysis
demonstrated that the computational FE scheme in [37]
is not even weakly reusable. In fact, from the helper
data, HD1 and HD2, of two instances of the scheme, an
attacker can learn the original biometric inputs w1 and
w2 in their entirety. Fixes to the FE scheme in [37] were
then developed by using common public parameters and
proven secure in the weak-reusability model, and further
transformed to ensure string re-usability in the random
oracle model. We are not aware of any work studying the
problem of non-interactive re-enrollment in biometric
authentication systems based on FEs/FVs, except for the
preliminary version of the present work in [42].

Secure two/multiparty computation (2PC/MPC) has
been an active area of research for the past three decades
[43]–[52]. Recent models and practical schemes [53] pro-
vide a trade off between security and privacy guarantees
on one hand, and required computation and communi-
cation on the other. For example, the covert model [54]
accounts for settings where the involved parties are less
likely to cheat if they get caught with a high probability
(e.g., 0.5) and the work in [55] proposes protocols in
which a malicious adversary may learn a single (ar-
bitrary) bit of additional information about the honest
party’s input. Generic 2/MPC protocols can be utilized
as is in cryptographically secured BIA systems but may
incur higher overhead. If performance of generic pro-
tocols is unsatisfying, one can design function specific
secure protocols for the generate function of FE/FV;
several function-specific two and multiparty protocols
for pattern matching were also developed in [56], [57].

4 SNUSE APPROACH

Figure 1 illustrates the SNUSE’s operation during a)
initial user enrollment, b) regular user authentication,
and c) non-interactive user re-enrollment. SNUSE in-
volves three types of parties: a User (U), an Au-
thentication Server (AS), and n Re-Enrollment Servers
({RES1, . . . , RESn}).

During the initial enrollment of U into the BIA system,
U ’s biometric template BTU is secret shared into n shares
([BTU ]1, . . . , [BTU ]n). Each share is distributed to one of
the n Re-Enrollment Servers ({RES1, . . . , RESn}). The
RESs then jointly generate U’s secret kU and use an MPC

protocol to compute FV’s helper data, HDkU , from their
shares ([BTU ]1, . . . , [BTU ]n), thus securely using BTU to
“lock” kU .

Regular user authentication happens between U and
AS. Since AS only stores HDkU (which reveals nothing
about BTU ), the FVOPEN algorithm must be used to
retrieve kU . If HDkU was correctly computed using a
secure FVGEN algorithm, the only way to retrieve kU
from HDkU is by providing, as input to FVOPEN , a
second biometric template BT ′U which is close enough to
the original BTU . Therefore, FVOPEN (BT ′U , HDkU ) will
successfully retrieve kU if, and only if, BT ′U ≈ BTU , i.e.,
BT ′U is a noisy version of the same biometric used to
generate HDkU . After this stage, in the case where kU is
a cryptographic key, for instance, it can be used by U to
decrypt files or messages, or to get access to resources
based on the recovered secret.

Whenever kU needs to be replaced with a fresh secret
k′U (this process may happen periodically within an orga-
nization to guarantee freshness of users’ cryptographic
keys), RESs are brought online and connected to the
system, and AS issues a request to the RESs to compute
a new HDk′U

for U . The RESs will securely generate a
new k′U and (as in the enrollment protocol) use U ’s se-
cret shares [BTU ]1, . . . , [BTU ]n, stored during U ’s initial
enrollment, to compute HDk′U

. This way, users’ crypto-
graphic materials can be refreshed and brand new HDs
can be constructed without requiring users’ presence to
re-sample their biometrics and without storing their BTs
in clear.

At a first sight, a simple approach for generating a
fresh k′U would be to multiply the y-coordinates in the
FV by randomness σ, which would result in a fresh
random key k′ = k · σ encoded in the FV. However,
this approach does not work for several reasons. First,
as discussed before, k might not be an independent
random byte-stream, such as a symmetric key; it could,
for instance, include a set of user permissions or an
asymmetric private-key (sk′) associated with the user’s
public-key. In the latter case, the generation of fresh
k′ = sk′ implies deriving the corresponding new public-
key (pk′). SNUSE can handle these cases while simple
multiplication by randomness can not. Second, while this
approach using randomization might work for a classic
FV with symmetric keys, because the key is encoded as
coefficients of a polynomial, it does not necessarily apply
to other FV/FE constructions; SNUSE on the other hand
is a generic approach (as any computable function can be
computed using MPC), that could be implemented with
other FV/FEs. Third, even in the case where the scheme
uses a classic FV to encode a random symmetric key,
multiplying by randomness σ will update the encoded
secret but will prevent the reconstruction of the secret,
i.e., k′U = FVOPEN (BT ′U , HD) cannot be computed;
this is because FVOPEN must verify the hash of each
candidate recovered key with the stored H(k) to decide
if the correct key was reconstructed. However, H(k′)
cannot be updated in the same way, because for any
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reasonable hash function, H(σ · k) 6= σ ×H(k).
Throughout the rest of this section we describe the

steps of SNUSE in more details. We have implemented
SNUSE with fingerprints and iris scans, and evaluated
SNUSE performance in terms of computation and storage
requirements. Our evaluation shows that SNUSE can re-
enroll thousands of users in seconds; the storage require-
ments for thousands of users is a few MBytes.

Remark. All message exchanged in the following protocols
are assumed to be through secure authenticated channels, such
as standard TLS. The establishment of such secure channels
is omitted from the protocols for the sake of clarity.

4.1 Initial User Enrollment
The initial user enrollment, presented in Fig. 2, is the
only protocol in SNUSE that involves all parties, i.e.,
U , AS, and RESi ∀i ∈ [1, n]. This protocol is executed
only once for each user, all interactions after the initial
enrollment are performed either between U and AS (au-
thentication), or between AS and RESs (re-enrollment).

The protocol starts with U using a trusted enrollment
device (e.g., fingerprint sensor, iris reader), referred to
as B.T. Reader, to measure and extract U ’s biometric
template BTU (Fig. 2, line 1). BTU is then split into n
secret shares, where n is the number of RESs. Each share
[BTU ]i transmitted to, and stored by, the respective RESi
(Fig. 2, lines 2-4). Note that in Fig. 2 we only depict one
RESi, however, in reality each of the n RESs receives
and stores its share [BTU ]i.

Once each share [BTU ]i is stored on the corresponding
RESi, the RESs agree on the new authentication material
k for the user, by using RESSecretGen (Fig. 2, line 5).
The details of RESSecretGen are application specific and
discussed below, in Section 4.2.

Note that, during user enrollment protocol, BTU is
only visible in clear to the trusted sensor device that
reads and then secret shares the biometric. Each RESi
only sees its own share which leaks no information about
BTU itself. AS only sees HD, which can not be used
to reconstruct BTU by the security of FV. Therefore,
confidentiality of the biometric is ensured during user
enrollment. In fact, there is no single server from which
BTU can be retrieved in clear. BTU only exists in clear
ephemerally at the B.T. Reader and that must happen
anyway because B.T. Reader is the sensor device used
to sample the user’s biometric.

4.2 User Authentication
A consequence of correct computation of HD using MPC
in the enrollment phase is that the user authentication
protocol consists of simply using standard local compu-
tation of FVOPEN with a new biometric reading BT ′U
and the stored HD. The RESs do not participate in
user authentication, but only in the enrollment and re-
enrollment protocols.

The authentication protocol, shown in Fig. 3, starts
with a user supplying its ID (UID) and biometric sample

to the B.T. Reader. A biometric template BT ′U is gener-
ated from the new sample and kept locally. UID is sent
to AS which fetches U ’s HD from its database based
on the supplied UID, and sends the associated HD as a
reply. BT ′U is then used to extract k from HD using the
FVOPEN algorithm. Note that here, and similar to user
enrollment, U ’s BT only exists in clear in the B.T. Reader.

The exact specification of RESSecretGen() as well
as the usage of the secret k after user authentication are
application specific, i.e., k can be an arbitrary secret used
for different purposes. We follow an approach similar to
the one (e.g., [58]) utilized in Password-Authenticated
Key Agreement (PAKE) and do not restrict the usage of
k, leaving it up to the use-case. Nonetheless, for clarity,
we illustrate two potential uses:
• k may be used to decrypt files from a file-system,

i.e., used as an encryption-based access control
mechanism. In this case, RESSecretGen() will
consist of the such file-system choosing k and send-
ing it (in clear or, optionally as secret shares to the
RESs). After successful user authentication, k can be
used to decrypt such files.

• k may be used to authenticate to a remote server. Af-
ter retrieving the secret k, the user can authenticate
to the server using a standard challenge-response
mechanisms based on the secret k. In that case, k
might be part of an asymmetric encryption scheme
(sk, pk), where k = sk and pk is a public key, known
to the remote server (i.e., the challenging party) and
associated with the secret key sk. The remote server
can then authenticate the user by sending a chal-
lenge Encpk(nonce), where nonce ← ${0, 1}l. If the
user is able to retrieve k from the FV, it can then use
k = sk to compute nonce ← Decsk(Encpk(nonce))
and send the result back to the remote server, prov-
ing its claimed identity.

4.3 Non-Interactive User Re-Enrollment
Non-interactive user re-enrollment works by having the
RESs compute a new HD based on a fresh secret k′.
Since the shares of the biometric template are stored
during the initial enrollment, this step does not require
user involvement, even though the biometric template
does not exist in clear neither at RESs nor AS.

In this protocol, AS sends a request for re-enrollment
for each RESi, containing the user ID(s) for which re-
enrollment(s) should occur. The RESs will then jointly
generate a new secret k′ for each user (a different k′ for
each user) and encode it as a polynomial of degree d.
Each RESi then uses UID to fetch the secret share [BTU ]i
associated with UID and uses FVMPC

GEN to compute Pk′(x)
on the secret share [BTU ]i. The result is a secret share
[HD]i for a brand new HD which encodes the freshly
generated k′ under the same biometric template BTU .
This process is depicted on Fig. 4. Finally, AS receives all
N shares [HD]i and compute the new HD for each user
U , which can, from this point on, be used for authenticat-
ing user with the protocol in Fig. 3. Notice that, during
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B.T. Reader Re-Enrollment Server i Authentication Server
1 : BTU ← BTSample(U)

2 : {[BTU ]1, . . . , [BTU ]n} ← BTU

3 :
[BTU]i

−−−−−−−−→

4 : storeEntry(UID, [BTU ]i)

5 : k ← RESSecretGen()

6 : Pk(x)← poly(k, d)

7 : [HD]i ← FV MPC
GEN (Pk(x), [BTU ]i)

8 :
[HD]i

−−−−−−−−→

9 : HD ← {[HD]1, . . . , [HD]n}
10 : storeEntry(U,HD)

11 :
ACK

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 2. User enrollment protocol in SNUSE. See detailed description of steps in Section 4.1.

B.T. Reader Authentication Server
1 : BT ′U ← BTSample(U)

2 :
UID

−−−−−−−−→

3 : HD ← fetch(UID)

4 :
HD

←−−−−−−−−

5 : k ← FVOPEN (BT ′U , HD)

Fig. 3. User authentication protocol in SNUSE. See de-
tailed description of steps in Section 4.2.

Authentication Server Re-Enrollment Server i

1 :
UID

−−−−−−−−→

2 : k′ ← RESSecretGen()

3 : Pk′(x)← poly(k′, d)

4 : [BTU ]i ← fetch(UID)

5 : [HD]i ← FV MPC
GEN (Pk′(x), [BTU ]i)

6 :
[HD]i

←−−−−−−−−

7 : HD ← {[HD]1, . . . , [HD]N}

Fig. 4. Re-Enrollment protocol in SNUSE. See detailed
description of steps in Section 4.3.

the execution of the re-enrollment protocol, BTU is not
reconstructed in clear at any point. This is only possible
because of the computation of HD using MPC over
the secret shares. Otherwise, this process would require
either i) user involvement to collect another biometric
reading or ii) storing the biometric template in clear in
the backend servers.

4.4 Using MPC to generate the HD
The fundamental part of SNUSE that allows non-
interactive user re-enrollment (without storing BTU in
clear) is the ability to compute the HD from the secret

shares {[BTU ]1, . . . , [BTU ]N} of BTU . In the protocols of
Fig. 2 and Fig. 4, this is represented by the computation
of the function FVMPC

GEN (Pk(x), [BTU ]i), resulting in a
secret share [HD]i that can be interpolated to reconstruct
the actual HD.

In this section, we discuss how FVGEN is computed
from the secret shares. We start by outlining the basic
operations needed to compute FVGEN , and then de-
scribe details of how each is performed using secret
shared data. The standard local computation of FVGEN
algorithm, involves three basic types of operations:

1) Evaluation of the polynomial Pk(x), that encodes
k, on each of the M data points ({p1, . . . , pM}) that
compose BTU to generate the list of points in the
polynomial Pk:

P = {(p1, Pk(p1)), . . . , (pi, Pk(pi)), . . . , (pM , Pk(pM ))}
(11)

2) Generation of a list S composed of s random chaff
points (rx, ry), to be shuffled together with the
polynomial points:

S = {(rx,1, ry,1), . . . , (rx,i, ry,i), . . . , (rx,s, ry,s)} (12)

3) Random permutation π to shuffle the elements of
lists S and P together generating the HD:

HD = π(P ∪ S) (13)

Steps 2 and 3 are relatively easy to compute when
compared step 1. For the random chaff point gener-
ation (Step 2), each RESj computes a random share
[(rx,i, ry,i)]j . When the randomly generated shares are
merged together they will result in random chaff points.

For Step 3, all M RESs agree on a single random per-
mutation π, and all of them permute their secret shares
according to this same randomly chosen permutation.
Note that the permutation π is kept secret from AS,
because knowing π would allow an adversary who takes
control of AS to separate chaff points from the points in
the polynomial by computing π, allowing reconstruction
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of BTU . Nevertheless, even though AS does not know
which permutation was used, because each RES use the
same permutation to compute π(P ∪ S) on their shares,
each share will be matched to its correct set of shares
during the reconstruction of the HD at AS.

Since we are able to generate random chaff points
and compute a permutation on the secret shares (which
results in a permutation on the reconstructed HD), the
remaining task for FVGEN is to compute the polynomial
Pk using MPC on each of the secret shares. We discuss
the classic approach to compute Pk using MPC and then
we introduce our optimized version that takes advantage
of pre-computation of secret exponents before the secret
sharing phase.

In the classical approach, assuming that BTU is com-
posed of M data points, each secret share [BTU ]j corre-
sponding to RESj would be a vector in the form:

[BTU ]j = {[p1]j , . . . , [pM ]j} (14)

The polynomial Pk can be generically defined as:

Pk(x) =

d∑
i=0

aix
i (15)

where:
{a0, . . . , ad} ← k (16)

denoting that the coefficients of the polynomial encode
k. Therefore, computing Pk(x) implies computing expo-
nentiation up to degree d on the secret shared variables,
multiplication of the resulting values by the respective
constants a0, . . . , ad, and addition on the resulting terms
aix

i for all i ∈ [1, . . . , d].
As discussed in Section 2, the bulk of the overhead on

MPC comes from multiplication of secret shares, because
addition (and consequently multiplication by a constant)
can be computed locally by adding the secret shares.
Multiplication, on the other hand, requires communica-
tion, since the parties must publish intermediate results,
i.e., broadcast them to all other parties involved in the
MPC protocol. This is usually the major source of over-
head in the MPC evaluation, because each multiplication
involves several rounds of communication between all
parties, and network delays.

The computation of xd, with no optimization, requires
d multiplication operations, i.e., computing

∏d
x. In such

approach, computing all terms in Eq. (15) would take∑d
i=0 i. Therefore, the number of communication rounds

to compute the HD shares would be:

T = M ∗
d∑
i=0

i (17)

In terms of asymptotic complexity this naive approach
yields Θ(d × log(d)) multiplications, where d is the
polynomial degree. Such number of multiplications can
be trivially reduced to d if we take into account that
xn = x·xn−1. This implies that the result of a lower order

polynomial term can be used as an intermediate result
for the computation of the subsequent term, reducing
the number of communication rounds to compute the
HD to:

T = M ∗ d (18)

resulting in linear asymptotic complexity of Θ(d) for the
number of required multiplications.

To make the process more efficient, we take a different
approach. We bring the number of necessary multiplica-
tions to zero by pre-computing the powers of x before
distributing the shares to the RESs. From the standard
BTU , which is a vector of M data points in the format
{p1, . . . , pM}, we pre-compute the xi exponents for all
i ∈ [1, d] and secret share each of the pre-computed
exponents for each data point. Therefore, a secret share
[BTU ]j of a biometric template with pre-computed ex-
ponents becomes a d × M matrix in the format:

[BTU ]j =



[(p1)1]j · · · [(pM )1]j
...

...
[(p1)i]j [(pM )i]j

...
...

[(p1)d]j · · · [(pM )d]j

 (19)

Each column in [BTU ]j represents a data point pi
and each line an exponentiation of such data point. For
example, line 3, column 4, would contain a secret share
of the fourth data point in BTU raised to the cubic power:
[(p4)3]j .

In this approach, a secret share is included for each of
the exponents of each data point. Thus, the evaluation
of the polynomial requires no multiplications of secret
shares because all exponents are now individual secret
shares in the matrix [BTU ]j . Therefore, the computation
of [HD]j to be done locally. Specifically, let [BTU ]j(x, y)
denote the element in line x and column y of the matrix3.
Then [y]j = Pk([pi]j) can be computed locally for every
i as:

Pk([pi]j) = a0 +

d∑
k=1

ak × [BTU ]j(k, i) (20)

where {a0, . . . , ad} are the polynomial coefficients de-
fined in Eq. (15).

This eliminates the need for network communication
making the scheme much faster. This optimization is
feasible because in practice d ≈ 10 and because, during
enrollment, one single entity (B.T. Reader) possesses
all data points. We take advantage of that to improve
efficiency of SNUSE by pre-computing the exponents
and including them in the secret shares of the biometric
templates. As detailed in Section 6, by pre-computing
the exponentiations, SNUSE achieves high performance
in terms of processing time with reasonable storage

3. In our notation the first row/column of a matrix is indexed by 1
and not 0.
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requirements that are comfortably within the capacity
of modern computers.

Algorithm 1: FVMPC
GEN computation on RESj

inputs : Secret share matrix [BTU ]j (Eq. (19)); fresh
secret k; random permutation π; number of
chaff points s; and polynomial degree d.

output: [HD]j
1 {a0, . . . , ad} ← EncodeAsPolynomialCoeffs(k, d);
2 Lp ← emptyList()
3 forall the i ∈ [1, 2, . . . , M] do
4 pix ← [BTU ]j(1, i)

5 piy ← a0 +
∑d
k=1 ak × [BTU ]j(k, i) /* MPC */

6 Lp.append([pix, piy])
7 end
8 Ls ← emptyList()
9 forall the i ∈ [1, 2, . . . , s] do

10 rx ← randGF (2τ )()
11 ry ← randGF (2τ )()
12 Ls.append([rx, ry])
13 end
14 L← concat(Lp, Ls)
15 [HD]j ← permute(L, π)
16 return [HD]j ;

Algorithm 1 synthesizes what is discussed in this
section with an algorithmic description of the method
to compute a share of a HD using MPC on the ma-
trix [BTU ]j of Eq. (19). AS receives all shares [HD]j
∀j ∈ [1, n] and uses them to reconstruct HD ←
{[HD]1, . . . , [HD]n}. Note that the MPC evaluation in
line 5 of Algorithm 1 only involves additions and mul-
tiplication by constants. Therefore, Algorithm 1 can be
computed locally at RESj not requiring communication.

4.5 Secret (k) Confidentiality Discussion

SNUSE is designed to provide non-interactive re-
enrollment, allowing one to refresh the stored secret
k without interaction and without compromising the
confidentiality of the BT. One may argue that the attack
surface for an attacker interested in stealing the user’s
secret k, instead of the BT, will increase because now all
RESs need to ephemerally store k at some point in time
to enable computation of the new HD. This restriction
can be addressed by generating k in a single separate
server and using MPC with k as a secret share as well.
We consider this optional in SNUSE design, as our focus
is to protect the BT itself. Having such feature would add
one communication round to the re-enrollment process,
because the polynomial coefficients that encode k need
to be multiplied by BT shares.

5 SNUSE’S IMPLEMENTATION

To demonstrate the practicality of SNUSE, we imple-
mented a fully functioning prototype working with both

fingerprints and iris scans. This section discusses the pro-
totype’s implementation details, including its software
stack and choices of security parameters.

We implemented SNUSE in C++, using the Number
Theory Library (NTL) [8]. The polynomials used in these
schemes were defined over the Galois Field GF (224),
which is large enough to securely encode cryptographic
keys while keeping the scheme computationally efficient.
The FV’s polynomial degree is a security parameter that
allows calibrating authentication accuracy; our results
show that the ideal polynomial degree that yields the
best accuracy results depends on the type of biometric
used. The number of data points and chaff points and the
distance functions used in FVOPEN are also specific to
the type of biometric used in the scheme. In Section 5.3
we present accuracy results as a function of the poly-
nomial degree of the FV for both fingerprints and iris
scans.

A SHA-256 hash function is used to compute the hash
of k, which is included in the HD to allow verification
of the reconstructed key in FVOPEN . Secret sharing and
MPC were also implemented using polynomials defined
over GF (224). Therefore, a BT secret share is defined as
a collection sets of shares for each data point in such BT.
The number of RESs is configurable and determines the
number of BT shares generated during the enrollment
phase. BT shares are delivered to RESs through TCP
sockets. During re-enrollment, AS sends a request to the
RESs. Each RES computes its respective share of HD
and sends it back to AS. AS uses all received shares
to reconstruct and store HD. Details about BT extrac-
tion algorithms are biometric-specific and discussed in
Sections 5.1 and 5.2. Section 5.3 presents authentication
accuracy results for each biometric mode. We emphasize
that SNUSE does not affect the accuracy of the underlying
BT matching (and therefore extraction) procedure and
improving the accuracy is an orthogonal issue. Nonethe-
less, we report on accuracy to justify our choices for the
FV polynomial degrees considered in SNUSE’s workload
evaluation in Section 6.

5.1 Template Extraction with Fingerprints
The first step in SNUSE is to extract the BT from the
sampled biometric. In the case of fingerprints, the bio-
metric reading is an image of the fingerprint and, as
discussed in Section 2, each data point pi in BT is
the position and orientation (xi, yi, θ) of a fingerprint
minutiae. In our fingerprint BT extraction we use NIST’s
Biometric Image Software (NBIS) [59]. From a biometric
sample, NBIS returns a set of identified minutiae sorted
by the confidence in the quality of such minutiae. From
NBIS output we select the 20 points with the highest
confidence and encode them as elements in GF (224).
Then we can use them as described in SNUSE’s design
(Section 4). In our prototype, an HD is composed of 20
real data points mixed with 200 chaff points.

During user authentication (using the FVOPEN ) can-
didate minutiae points are selected from the HD based on
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(a) Fingerprint biometric
template

(b) Iris biometric template

Fig. 5. a) Fingerprint pre-processing and feature extrac-
tion. On the top, two impressions of the same fingerprint.
At the bottom the correspondent feature extraction after
pre-alignment. b) Iris feature extraction. On the top, raw
iris scans of two different users and at the bottom the
resulting iris templates as bitmaps.

their distance to the minutiae points detected in the new
template BT ′, which is sampled from the user during
authentication. We use a distance function similar to the
one introduced in [60], defined as:

D(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 + β×∆(θi, θj) (21)

where ∆(θi, θj) = min(|θi − θj |, 360 − |θi − θj |). The
parameter β allows controlling how much importance is
given to the minutiae orientation in the overall distance
relative to the euclidean distance between the points.
A data point pi is selected from the helper data if
D(pi, pj) < w for some point in BT ′. As described in [60],
the parameters β and w must empirically calibrated to
yield the best accuracy. The fingerprint accuracy results,
reported in Section 5.3, were conducted with β = 0.2 and
w = 20.

To improve accuracy for noisy fingerprint readings,
before extracting the template, during the biometric
sampling, we compute the fingerprint pre-alignment
algorithm proposed in [61]. This algorithm works by
translating the fingerprint core-point to the center of
a coordinate system and then rotating the image ac-
cording fingerprint orientation patterns. This way, two
misaligned fingerprints can still be accurately matched in
FVOPEN , thus increasing the authentication’s accuracy.
Fig. 5(a) illustrates the result of the template extraction
for two misaligned impressions of the same fingerprint
before and after pre-alignment. White squares show the
minutiae detected in these fingerprints.

5.2 Template Extraction with Iris Scans
In the implementation of the iris version of our pro-
totype, we used the Osiris open-source library [62] for
iris templates extraction. Osiris receives as input an iris
scan image and outputs an iris template. The resulting
templates for two iris scans are depicted in Fig. 5(b).
OSIRIS starts by pre-processing the eye image, using

contour detection and masks to remove the eye contours,
eye lashes, and the pupil from the scan, leaving only the
iris. Next, the ring-shaped image, containing only the
iris itself is stretched into rectangle, which is referred to
as iris texture. Finally, different filters can be applied to
the iris texture, each of which resulting in a different
iris code, i.e., bitmaps formed by black and white pixels.
The actual template is a bitmap composed by the com-
bination of multiple iris codes generated using different
filter parameters. For instance, the templates shown in
Fig. 5(b) are formed by three iris codes vertically con-
catenated.

Standard iris based authentication works by xor-ing
the bitmaps of the BT generated during enrollment with
the new BT provided by the user during authentication.
However, such methods are not applicable to fuzzy
vaults (recall that the Fuzzy Vault requires a biometric
template formed by a set of points in a field). Differently
from fingerprints, the iris BT is not a set of data points
that can be directly used to generate an FV. Therefore,
the bitmap output must be encoded into multiple data
points in such a way that these points can be matched
together, by using a given distance function, during
FVOPEN computation.

To address this issue we develop a simple encoding
mechanism. We divide the biometric template into a grid
of 36 equally sized squares. Let S[x, y] denote the square
in line x column y of the template grid and N(S[i, j])
the number of black pixels in such square. The set of
data points that compose the biometric template in this
encoding scheme are defined as:

BTU =

6⋃
i=1

3⋃
i=1

[N(S[i, 7− j]), N(S[i, j])] (22)

The resulting BT contains 18 data points in the format
p = [x, y] where x and y are the number of black pixels in
a pair of squares in the template. In our implementation
we define the template resolution such that x and y can
be represented in 12 bits each and, therefore, each data
point can be encoded as an element of GF (224). These
18 points are mixed with 200 chaff points to generate the
HD. Finally, to implement FVOPEN we use the distance
function:

D(pi, pj) = |xi − xj |+ |yi − yj | (23)

which measures the absolute difference in the number
of black pixels in both squares that compose each data
point. A point is considered a chaff point if such dis-
tance is larger than a threshold w. In our iris accuracy
experiments in Section 5.3 we set w = 100.

The scheme above is one of multiple possibilities for
encoding schemes and distance functions. As our focus
in this work is not on biometric template extraction, but
on non-interactive user re-enrollment using MPC, we
use straight-forward encoding mechanism and distance
functions. We refer the interested reader to [63] for more
sophisticated methods to encode iris scans into templates
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that are suitable for usage with FVs. While our simple
iris encoding mechanism has modest accuracy results of
≈ 80% genuine acceptant with ≈ 5% false acceptance,
these numbers could reach > 99% GAR with nearly 0
FAR if an encoding scheme such as the one in [63] is
used. It is worth emphasizing that the accuracy relates
to the biometric template extraction which is orthogonal
to SNUSE and thus not the focus of the present work.

5.3 Authentication Accuracy

As described above, our prototype supports fingerprints
and iris scans. We evaluate the accuracy of using these
two biometric modalities with respect to the two follow-
ing metrics:
• Genuine Acceptance Rate (GAR): Percentage of

rightful users that are successfully authenticated
after providing the correct biometric sample.

• False Acceptance Rate (FAR): Percentage of users
authenticated when providing unauthorized bio-
metric sample.

Our accuracy experiments were conducted using two
fingerprint and one iris datasets:
• FVC2000-DB1: Fingerprint database containing 10

fingers with 8 impressions each. Samples collected
using a low-cost optical sensor4.

• FVC2000-DB2: Fingerprint database containing 10
fingers with 8 impressions each. Samples collected
using a low-cost capacitive sensor5.

• IIT Delhi Iris Database (Version 1.0): Iris scans
from 200 eyes with 10 impressions each. Samples
collected using JPC1000 digital CMOS camera6.

For each database we cross-check every possible pair
of biometric samples using one of them to compute
generate the HD by computing FVGEN and the other to
unlock the HD by computing FVOPEN . Therefore, GAR
is computed as the fraction of different impressions for
the same biometric that are successfully authenticated
during FVOPEN . Conversely, FAR is the fraction of
biometric samples that succeed in computing FVOPEN
in an HD generated using a biometric sample of some
other user.

Recall that the polynomial degree in the fuzzy vault al-
gorithm determines the number of data points correctly
retrieved from the HD that are necessary to reconstruct
the secret. Therefore, a low polynomial degree tends to
increase GAR and FAR and a high polynomial degree
tends to decrease both. We present the accuracy results
for each of the aforementioned databases in Fig. 6, as
a function of the polynomial degree. The degree can be
calibrated, depending on the application case to yield
appropriate accuracy. For example, in the fingerprint
databases, a degree of 7 yields a GAR of ≈90% with

4. Available at: http://bias.csr.unibo.it/fvc2000/
5. Available at: http://bias.csr.unibo.it/fvc2000/
6. Available at: http://www4.comp.polyu.edu.hk/∼csajaykr/IITD/

Database Iris.htm

a FAR of ≈3%. Degree 8 yields ≈80% GAR with 0 FAR.
In the iris scan implementation a degree of 5 results in
≈80% GAR with ≈5% FAR.

6 SNUSE EVALUATION

In this section we evaluate additional workload and
storage requirements imposed by SNUSE. The choice for
FV polynomial degrees and other parameters used in
this evaluation was based on the results in Section 5.3.
Such accuracy results show, for example, that for fin-
gerprints, a polynomial with degree 7 yields a GAR of
≈90% with a FAR of ≈3%. A polynomial with degree
8 yields ≈80% GAR with 0 FAR. In our iris scans
implementation, a polynomial with degree 5 results in
≈80% GAR with ∼5% FAR. In the following we proceed
with the evaluation of computational workload in terms
of time and storage required by SNUSE.

6.1 Computational Workload
In this section we evaluate the computational workload
of SNUSE. We measure the time required to compute
SNUSE protocols with special emphasis on the large scale
user re-enrollment over a local enterprise network. This
simulates the use case in which a company/enterprise
wants to re-enroll all its employees/users refreshing
their secrets/cryptographic keys. The experiments pre-
sented throughout this section were executed in an Intel
Core i7-3770 octacore CPU @3.40GHz, with 16GB of
RAM, running Linux (Ubuntu 14.04LTS).

AS and the RESs were implemented as independent
processes communicating though TCP sockets. An arti-
ficial delay of 10 milliseconds is introduced in order to
simulate a typical communication delay for a local area
network. Unless stated otherwise, the FV polynomial de-
gree is set to 7 (which has shown to be a reasonable value
according to the accuracy results reported in Section 5.3)
and the number of RESs is set to 5. We use a (K,N)
Shamir secret sharing scheme with K = N . Therefore, all
secret shares are required to reconstruct the shared secret
and, consequently, all parties are required to participate
in the MPC protocol.

We start the evaluation by measuring the execution
times of each of SNUSE’s protocols: Enrollment, Authen-
tication, and Re-Enrollment. Table 1 presents the average
times and standard deviations (out of 100 independent
executions) of each protocol for a single user. The results
show that enrollment and authentication phases are
considerably more time demanding (in the order of a
second) than re-enrollment. This cost is a consequence
of the BT extraction process, required in both phases.
Since re-enrollment is performed based on the secret
shares of the BT, it does not require BT extraction.
Moreover, due to the exponentiation pre-computation
optimization described in Section 4.4, it only requires one
communication round between the AS and the RESs. As
a consequence re-enrollment for one user is performed in
13 milliseconds, on average. In our next experiment, we

http://bias.csr.unibo.it/fvc2000/
http://bias.csr.unibo.it/fvc2000/
http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm
http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm
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(a) Low-cost Optical Sensor (b) Low-cost Capacitive Sensor

(c) Iris Scans

Fig. 6. SNUSE accuracy: GAR and FAR using fingerprint low-cost optical sensor, fingerprint low-cost capacitive sensor,
and iris scans

Protocol Avg. Time Std. Dev.
Enrollment 945.9 ms 24.1 ms

Authentication 848.7 ms 26.2 ms
Re-Enrollment 13.2 ms 0.2 ms

TABLE 1
Execution times for SNUSE protocols

evaluate the effect that increasing the FV’s polynomial
degree has on the computation time of each algorithm.
We consider reasonable polynomial degrees from 5 to 15
and compute the overall required time for each case. The
results displayed on Fig. 7(a) show that the variation of
polynomial degree has negligible impact on the execu-
tion time of the protocols. The only perceptible change is
in the authentication protocol, that has a slightly higher

execution time with high degrees. FVOPEN , which is
computed during authentication, executes multiple poly-
nomial interpolations with the candidate data points
selected by comparing the provided biometric template
data points with the points in the HD. In this process,
subsets of size d+ 1 (where d is the polynomial degree)
are selected from the 20 candidate points, interpolated
and the resulting secret is hashed and compared to the
hash in the HD. Increasing d also increases the number of
possible combinations, consequently increasing the num-
ber of polynomial interpolations. Therefore, the average
computation time for authentication also increases by
a total of 12% with a polynomial degree of 15, when
compared to a polynomial degree of 5.

Finally, we evaluate how re-enrollment performs at
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Fig. 7. a. Execution time as a function of the FV’s polynomial degree b. Processing time for massive user re-
enrollments with varying number of RESs

large scale, in the order of thousands of simultaneous
user re-enrollments. We run the large scale experiments
using 3, 5, 7, and 9 RESs. The results for the large
scale experiments are depicted in Fig. 7(b). We can see
that the re-enrollment processing time scales linearly
with the number of simultaneous re-enrollment requests.
The re-enrollment time for SNUSE running with more
RESs is also slightly higher than with smaller number
of RESs, which is expected due to the higher amount of
computation required. Nevertheless, our results indicate
that the re-enrollment of massive number of users is
affordable. For example, re-enrolling 100 thousand users
would using 9 RESs would take less than five minutes
and re-enrolling 1 million users would be possible in less
than an hour.

6.2 Storage Requirements

SNUSE stores the HD in the AS and the biometric tem-
plate secret shares in the RESs. The HD public parame-
ters Φ = {F, d,M,H(k)} (recall that H(k) is implemented
with a SHA-256 hash function) by themselves require 39
bytes per HD. In our implementation, using GF (224),
each element in the HD (data points and chaff points)
can be encoded into 6 bytes. Considering an HD with 20
biometric data points and 200 chaff points, and HD for
one user requires 220× 6 + 39 = 1359 bytes. Considering
that an additional user ID of 30 bytes is associated to
each HD entry in the AS database, a massive number
of user entries, e.g., 1 million, would require (1359 +
30)× 106 = 1.39 GB of storage, which is well within the
capacity of modern computers. Increasing the number of
users or the number of chaff points used to construct the
vault would increase this number linearly. The degree of

the polynomial used in the fuzzy vault does not affect
the storage requirements on the AS.

Each RES has to store one share of a BT per user.
Therefore, the storage requirement depends on the size
of such shares. In Section 4.4 we discuss three ap-
proaches that differ from each other in the number of
multiplications required and consequently in the number
of network communication rounds. In the first two ap-
proaches, each secret share will have the same size of the
original biometric template, because no pre-computation
of exponentiations takes place before the secret sharing.
Therefore, considering a biometric template composed
of 20 data points in GF (224), each secret share would
require 60 bytes of storage plus 30 bytes for storing
the associated user ID. In the case of pre-computing
exponentiations before secret sharing, each secret share
is in the format of the matrix in Eq. (19) of Section 4.4. In
this latter case, the size of each secret share depends on
the polynomial degree used in the fuzzy vault and on
the number of data points. If GF (224) is used as the field
for the scheme, each element in the secret share matrix
can be encoded as 3 bytes. Considering a biometric
template with 20 data points and a polynomial of degree
15 (which is a comfortable upper bound, based on the
accuracy result we present in Section 5.3) each secret
share would require 3 ·20 ·15 = 900 bytes. With 1 million
users this would result in a storage requirement of 900
MB per RES.

7 SECURITY ANALYSIS

7.1 Confidentiality of Stored Biometrics
In practice, backend servers may store thousands or
even hundreds of thousands of BTs. Therefore, an ad-
versary that compromises a backend server which stores
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biometrics in clear can obtain this massive number of
biometrics.

In SNUSE, compromising AS does not allow the ad-
versary to reconstruct BT because AS only store HDs,
and the infeasibility of reconstructing a BT from an HD
is guaranteed by security of the underlying FV scheme,
which in turn relies on the infeasibility of the polynomial
reconstruction problem [16].

On the other hand, the adversary might attempt to
retrieve the stored BTs by compromising the RESs.
SNUSE’s security, in this case, relies on the secret sharing
scheme. In other words, if a (K,N) scheme is used, recon-
structing BT in clear implies compromising at least K out
of the N RESs. K can be made arbitrarily large according
to the desired resilience in a given organization.

7.2 Confidentiality of Biometrics During Execution

The system does not store the BT at any backend
server (RES or AS). In addition, the biometric is not
reconstructed at the servers during the computation of
enrollment, re-enrollment, or during user authentication.
The biometric is only visible in clear at the B.T. Reader,
during initial enrollment and regular authentication.
However, there is no way to work around that, because
B.T. Reader is the physical sensor device that samples
the biometric. Moreover, since these sensors are sim-
ple devices (compared to backend servers), orthogonal
trusted computing techniques such as remote attestation
for low-end devices [64]–[66] can be efficiently used
to ensure that such devices are operating as expected
(i.e., not infected by Malware that could compromise BT
confidentiality).

If the HD’s secret (k) is visible to RESs (see Section 4.5
for further discussion), an adversary that is able to
compromise one RES, during the execution of enrollment
or re-enrollment protocols, obtains k. We argue that this
is not as threatening as reconstructing the BT in clear.
Note that, given the re-enrollment functionality provided
by SNUSE, it is relatively easy to revoke and re-assign
a fresh secret to a user. On the other hand, a user’s
biometric is usually tied to the individual through its
whole life.

Regarding the biometric’s confidentiality, compromis-
ing less than K RESs during the execution of the protocol
does not reveal anything about BT. However, compro-
mising at least one RES and the AS, at the same time,
during enrollment/re-enrollment execution reveals the
BT being computed at that time. This is due to the
construction of the fuzzy vault scheme, which allows
someone possessing the secret k and HD to tell apart
which points in the HD are points in the polynomial
encoding k and which ones are chaff points. Therefore,
by having both k and HD one can reveal BT . This
limitation can be addressed by using MPC to perform
two things: (1) compute the HD of a FV from randomly
generated secret shares [k]i of secret k chosen in a secure
distributed manner, and (2) compute the permutation

π. Another interesting direction is to develop an FE or
FV scheme7 that does not allow someone in possession
of k and HD to reveal BT . We defer these as future
work. Nevertheless, even in this case, the attack surface
is much smaller, because of three reasons: (1) it requires
compromising both AS plus one RES, (2) the attacker
must have control of both of them during the protocol
computation, and (3) even then only one BT (the one for
which the FV is being computed at that time) is leaked,
instead of the whole database.

7.3 Re-Usability of Fuzzy Vaults

Another important issue is the re-usability of traditional
FVs and FEs. In FVs, for example, the possession of
two different HDs generated from the same BT (e.g.,
a user authenticates with the same biometric in two
different organizations) allows an adversary to tell apart
chaff points from minutiae points. It would be interesting
to implement MPC-based re-enrollment with a reusable
FEs (e.g., [67]). We defer this direction as future work.

8 CONCLUSION AND FUTURE WORK

We study the problem of non-interactive re-enrollment
in cryptographically secured Biometrics-based Identifi-
cation and Authentication (BIA) systems. We argue that
addressing this issue is paramount for real-life deploy-
ments of such systems and to ensure long-term confi-
dentiality of biometrics. We develop a new approach
for Secure Non-interactive Users at Scale re-Enrollment
(SNUSE) and prototype it. SNUSE does not affect the
the accuracy of the underlying biometric feature extrac-
tion scheme and our experimental results, using stan-
dard computing servers, show efficient re-enrollment for
thousands of users in a few seconds. Our prototype
implementation achieves a high detection accuracy with
over 90% Genuine Acceptance Rate (GAR) and less than
5% False Acceptance Rate (FAR).

The following are avenues for future work. First, our
approach could be expanded to support other FE/FV
schemes, e.g., computational and reusable ones. Second,
it would be interesting to add support for other biomet-
rics in addition to fingerprints and iris, and other types
of devices, e.g., smart-phones. One challenge is that
other biometrics have other notions of matching distance
which may require development and optimizations of
the secure computation circuits to be practical. In theory
any regeneration algorithm and any notion of matching
distance can be handled, but practical feasibility does
not always follow from theoretical feasibility. Finally, our
prototype is in the honest-but-curious model, extending
it to handle fully malicious, or covert adversaries, with-
out significant overhead is an interesting problem.

7. This property is not guaranteed by default by several FE/FV
schemes, because it is not captured by their definitions.
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[51] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multi-
party computation from somewhat homomorphic encryption,” in
CRYPTO’12. Springer-Verlag New York, Inc., 2012.
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