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Abstract
Modern society is increasingly surrounded by, and is growing
accustomed to, a wide range of Cyber-Physical Systems (CPS),
Internet-of-Things (IoT), and smart devices. They often per-
form safety-critical functions, e.g., personal medical devices,
automotive CPS as well as industrial and residential automa-
tion, e.g., sensor-alarm combinations. On the lower end of the
scale, these devices are small, cheap and specialized sensors
and/or actuators. They tend to host small anemic CPUs, have
small amounts of memory and run simple software. If such
devices are left unprotected, consequences of forged sensor
readings or ignored actuation commands can be catastrophic,
particularly, in safety-critical settings. This prompts the fol-
lowing three questions: (1) How to trust data produced, or
verify that commands were performed, by a simple remote em-
bedded device?, (2) How to bind these actions/results to the
execution of expected software? and, (3) Can (1) and (2) be
attained even if all software on a device can be modified and/or
compromised?

In this paper we answer these questions by designing,
demonstrating security of, and formally verifying, APEX: an
Architecture for Provable Execution. To the best of our knowl-
edge, this is the first of its kind result for low-end embedded
systems. Our work has a range of applications, especially, au-
thenticated sensing and trustworthy actuation, which are in-
creasingly relevant in the context of safety-critical systems.
APEX is publicly available and our evaluation shows that it
incurs low overhead, affordable even for very low-end embed-
ded devices, e.g., those based on TI MSP430 or AVR ATmega
processors.

1 Introduction
The number and diversity of special-purpose computing de-
vices has been increasing dramatically. This includes all
kinds of embedded devices, cyber-physical systems (CPS) and
Internet-of-Things (IoT) gadgets, utilized in various “smart” or
instrumented settings, such as homes, offices, factories, auto-
motive systems and public venues. Tasks performed by these
devices are often safety-critical. For example, a typical indus-
trial control system depends on physical measurements (e.g.,
temperature, pressure, humidity, speed) reported by sensors,
and on actions taken by actuators, such as: turning on the A/C,
sounding an alarm, or reducing speed.

A cyber-physical control system is usually composed of mul-
tiple sensors and actuators, at the core of each is a low-cost
micro-controller unit (MCU). Such devices typically run sim-
ple software, often on "bare metal", i.e., with no microkernel
or hypervisor. They tend to be operated by a remote central
control unit and despite their potential importance to overall
system functionality, low-end devices are typically designed to
minimize cost, physical size and energy consumption, e.g., TI
MSP430.

Therefore, their architectural security is usually primitive or
non-existent, thus making them vulnerable to malware infesta-
tions and other malicious software modifications. A compro-
mised MCU can spoof sensed quantities or ignore actuation
commands, leading to potentially catastrophic results. For ex-
ample, in a smart city, large-scale erroneous reports of electric-
ity consumption by smart meters might lead to power outages.
A medical device that returns incorrect values when queried
by a remote physician might result in a wrong drug being pre-
scribed to a patient. A compromised car engine temperature
sensor that reports incorrect (low) readings can lead to unde-
tected overheating and major damage. However, despite very
real risks of remote software compromise, most users believe
that these devices execute expected software and thus perform
their expected function.

In this paper, we argue that Proofs of Execution (PoX) are
both important and necessary for securing low-end MCUs.
Specifically, we demonstrate in Section 7.3, that PoX schemes
can be used to construct sensors and actuators that “can not lie”,
even under the assumption of full software compromise. In a
nutshell, a PoX conveys that an untrusted remote (and possibly
compromised) device really executed specific software, and
all execution results are authenticated and cryptographically
bound to this execution. This functionality is similar to authen-
ticated outputs that can be produced by software execution in
SGX-alike architectures [13, 25] on high-end devices, such as
desktops and servers.

One key building block in designing PoX schemes is Remote
Attestation (RA). Basically, RA is a means to detect malware
on a remote low-end MCU. It allows a trusted verifier (V rf) to
remotely measure memory contents (or software state) of an
untrusted embedded device (P rv). RA is usually realized as a
2-message challenge-response protocol:

1. V rf sends an attestation request containing a challenge



(Chal) to P rv. It might also contain a token derived from
a secret (shared by V rf and P rv) that allows P rv to au-
thenticate V rf.

2. P rv receives the attestation request, authenticates the to-
ken (if present) and computes an authenticated integrity
check over its memory and Chal. The memory region can
be either pre-defined, or explicitly specified in the request.

3. P rv returns the result to V rf.
4. V rf receives the result, and decides whether it corre-

sponds to a valid memory state.
The authenticated integrity check is typically implemented as
a Message Authentication Code (MAC) computed over P rv
memory. We discuss one concrete RA architecture in Section 3.

Despite major progress and many proposed RA architectures
with different assumptions and guarantees [6–8, 15, 19, 20, 29,
33, 35, 36, 39], RA alone is insufficient to obtain proofs of
execution. RA allows V rf to check integrity of software re-
siding in the attested memory region on P rv. However, by
itself, RA offers no guarantee that the attested software is ever
executed or that any such execution completes successfully.
Even if the attested software is executed, there is no guarantee
that it has not been modified (e.g., by malware residing else-
where in memory) during the time between its execution and
its attestation. This phenomenon is well known as the Time-Of-
Check-Time-Of-Use (TOCTOU) problem. Finally, RA does
not guarantee authenticity and integrity of any output produced
by the execution of the attested software.

To bridge this gap, we design and implement APEX: an
Architecture for Provable Execution. In addition to RA, APEX
allows V rf to request an unforgeable proof that the attested
software executed successfully and (optionally) produced cer-
tain authenticated output. These guarantees hold even in case
of full software compromise on P rv. Contributions of this work
include:
– New security service: we design and implement APEX for
unforgeable remote proofs of execution (PoX). APEX is com-
posed with VRASED [15], a formally verified hybrid RA ar-
chitecture. As discussed in the rest of this paper, obtaining
provably secure PoX requires significant architectural support
on top of a secure RA functionality (see Section 7). Nonethe-
less, we show that, by careful design, APEX achieves all neces-
sary properties of secure PoX with fairly low overhead. To the
best of our knowledge, this is the first security architecture for
proofs of remote software execution on low-end devices.
– Provable security & implementation verification: secure
PoX involves considering, and reasoning about, several details
which can be easily overlooked. Ensuring that all necessary
PoX components are correctly implemented, composed, and
integrated with the underlying RA functionality is not trivial. In
particular, early RA architectures oversimplified PoX require-
ments, leading to the incorrect conclusion that PoX can be
obtained directly from RA; see examples in Section 2. In this
work, we show that APEX yields a secure PoX architecture.
All security properties expected from APEX implementation

are formally specified using Linear Temporal Logic (LTL) and
APEX modules are verified to adhere to these properties. We
also prove that the composition of APEX new modules with a
formally verified RA architecture (VRASED) implies a concrete
definition of PoX security.
– Evaluation, publicly available implementation and appli-
cations: APEX was implemented on a real-world low-end
MCU (TI MSP430) and deployed using commodity FPGAs.
Both design and verification are publicly available at [1]. Our
evaluation shows low hardware overhead, affordable even
for low-end MCUs. The implementation is accompanied by
a sample PoX application; see Section 7.3. As a proof of
concept, we use APEX to construct a trustworthy safety-critical
device, whereupon malware can not spoof execution results
(e.g., fake sensed values) without detection.

Targeted Devices & Scope: This work focuses on CPS/IoT
sensors and actuators with relatively weak computing power.
They are some of the lowest-end devices based on low-power
single core MCUs with only a few KBytes of program and
data memory. Two prominent examples are: TI MSP430 and
Atmel AVR ATmega. These are 8- and 16-bit CPUs, typically
running at 1-16MHz clock frequencies, with ≈ 64 KBytes of
addressable memory. SRAM is used as data memory and its
size is normally ranges from 4 to 16KBytes, with the rest of
address space available for program memory. These devices
execute instructions in place (in physical memory) and have no
memory management unit (MMU) to support virtual memory.
Our implementation focuses on MSP430. This choice is due to
public availability of a well-maintained open-source MSP430
hardware design from Open Cores [23]. Nevertheless, our
machine model and the entire methodology developed in this
paper are applicable to other low-end MCUs in the same class,
such as Atmel AVR ATmega.

2 Related Work
Remote Attestation (RA)– architectures fall into three cate-
gories: hardware-based, software-based, or hybrid. Hardware-
based [31, 37, 42] relies on dedicated secure hardware compo-
nents, e.g., Trusted Platform Modules (TPMs) [42]. However,
the cost of such hardware is normally prohibitive for low-end
IoT/CPS devices. Software-based attestation [27, 40, 41] re-
quires no hardware security features but imposes strong secu-
rity assumptions about communication between P rv and V rf,
which are unrealistic in the IoT/CPS ecosystem (though, it is
the only choice for legacy devices). Hybrid RA [7,19,21,22,30]
aims to achieve security equivalent to hardware-based mecha-
nisms at minimal cost. It thus entails minimal hardware require-
ments while relying on software to reduce overall complexity
and RA footprint on P rv.

The first hybrid RA architecture – SMART [20] – acknowl-
edged the importance of proving remote code execution on P rv,
in addition to just attesting P rv’s memory. Using an attest-then-



execute approach (see Algorithm 4 in [20]), SMART attempts
to provide software execution by specifying the address of the
first instruction to be executed after completion of attestation.
However, SMART offers no guarantees beyond “invoking the
executable”. It does not guarantee that execution completes
successfully or that any produced outputs are tied to this ex-
ecution. For example, SMART can not detect if execution is
interrupted (e.g., by malware) and never resumed. A reset (e.g.,
due to software bugs, or P rv running low on power) might
happen after invoking the executable, preventing its successful
completion. Also, direct memory access (DMA) can occur dur-
ing execution and it can modify the code being executed, its
intermediate values in data memory, or its output. SMART nei-
ther detects nor prevents DMA-based attacks, since it assumes
DMA-disabled devices.

Another notable RA architecture is TrustLite [29], which
builds upon SMART to allow secure interrupts. TrustLite does
not enforce temporal consistency of attested memory; it is
thus conceptually vulnerable to self-relocating malware and
memory modification during attestation [9]. Consequently, it
is challenging to deriving secure PoX from TrustLite. Several
other prominent low-to-medium-end RA architectures – e.g.,
SANCUS [35], HYDRA [19], and TyTaN [7] – do not offer
PoX. In this paper, we show that the execute-then-attest ap-
proach, using a temporally consistent RA architecture, can be
designed to provide unforgeable proofs of execution that are
only produced if the expected software executes correctly and
its results are untampered.
Control Flow Attestation (CFA)– In contrast with RA, which
measures P rv’s software integrity, CFA techniques [2, 16, 17,
44] provide V rf with a measurement of the exact control flow
path taken during execution of specific software on P rv. Such
measurements allow V rf to detect run-time attacks. We believe
that it is possible to construct a PoX scheme that relies on CFA
to produce proofs of execution based on the attested control
flow path. However, in this paper, we advocate a different
approach – specific for proofs of execution – for two main
reasons:

• CFA requires substantial additional hardware features in
order to attest, in real time, executed instructions along
with memory addresses and the program counter. For ex-
ample, C-FLAT [2] assumes ARM TrustZone, while LO-
FAT [17] and LiteHAX [16] require a branch monitor and
a hash engine. We believe that such hardware components
are not viable for low-end devices, since their cost (in
terms of price, size, and energy consumption) is typically
higher than the cost of a low-end MCU itself. For exam-
ple, the cheapest Trusted Platform Module (TPM) [42],
is about 10× more expensive than MSP430 MCU itself1.
As shown in Section 7.2, current CFA architectures are
also considerably more expensive than the MCU itself
and hence not realistic in our device context.

1Source: https://www.digikey.com/

• CFA assumes that V rf can enumerate a large (potentially
exponential!) number of valid control flow paths for a
given program, and verify a valid response for each. This
burden is unnecessary for determining if a proof of exe-
cution is valid, because one does not need to know the
exact execution path in order to determine if execution
occurred (and terminated) successfully; see Section 4.1
for a discussion on run-time threats.

Instead of relying on CFA, our work constructs a PoX-specific
architecture – APEX– that enables low-cost PoX for low-end
devices. APEX is non-invasive (i.e., it does not modify MCU
behavior and semantics) and incurs low hardware overhead:
around 2% for registers and 12% for LUTs. Also, V rf is not
required to enumerate valid control flow graphs and the ver-
ification burden for PoX is exactly the same as the effort to
verify a typical remote attestation response for the same code.

Formally Verified Security Services– In recent years, several
efforts focused on formally verifying security-critical systems.
In terms of cryptographic primitives, Hawblitzel et al. [24]
verified implementations of SHA, HMAC, and RSA. Bond
et al. [5] verified an assembly implementation of SHA-256,
Poly1305, AES and ECDSA. Zinzindohoué, et al. [45] devel-
oped HACL*, a verified cryptographic library containing the
entire cryptographic API of NaCl [3]. Larger security-critical
systems have also been successfully verified. Bhargavan [4]
implemented the TLS protocol with verified cryptographic
security. CompCert [32] is a C compiler that is formally veri-
fied to preserve C code semantics in generated assembly code.
Klein et al. [28] designed and proved functional correctness of
the seL4 microkernel. More recently, VRASED [15] realized a
formally verified hybrid RA architecture. APEX architecture,
proposed in this paper, uses VRASED RA functionality (see
Section 3.2 for details) composed with additional formally
verified architectural components to obtain provably secure
PoX.

Proofs of Execution (PoX)– Flicker [34] offers a means for
obtaining PoX in high-end devices. It uses TPM-based attes-
tation and sealed storage, along with late launch support of-
fered by AMD’s Secure Virtual Machine extensions [43] to
implement an infrastructure for isolated code execution and
attestation of the executed code, associated inputs, and outputs.
Sanctum [13] employs a similar approach by instrumenting
Intel SGX’s enclaved code to convey information about its
own execution to a remote party. Both of these approaches are
only suitable for high-end devices and not for low-end devices
targeted in this paper. As discussed earlier, no prior hybrid RA
architecture for low-end devices provides PoX.



3 Background

3.1 Formal Verification, Model Checking &
Linear Temporal Logic

Computer-aided formal verification typically involves three ba-
sic steps. First, the system of interest (e.g., hardware, software,
communication protocol) is described using a formal model,
e.g., a Finite State Machine (FSM). Second, properties that the
model should satisfy are formally specified. Third, the system
model is checked against formally specified properties to guar-
antee that the system retains them. This can be achieved by
either Theorem Proving or Model Checking. In this work, we
use the latter to verify the implementation of system modules,
and the former to derive new properties from sub-properties
that were proved for the modules’ implementation.

In one instantiation of model checking, properties are speci-
fied as formulae using Temporal Logic (TL) and system models
are represented as FSMs. Hence, a system is represented by a
triple (S,S0,T ), where S is a finite set of states, S0 ⊆ S is the set
of possible initial states, and T ⊆ S×S is the transition relation
set – it describes the set of states that can be reached in a single
step from each state. The use of TL to specify properties allows
representation of expected system behavior over time.

We apply the widely used model checker NuSMV [11],
which can be used to verify generic HW or SW models. For
digital hardware described at Register Transfer Level (RTL)
– which is the case in this work – conversion from Hardware
Description Language (HDL) to NuSMV model specification
is simple. Furthermore, it can be automated [26], because the
standard RTL design already relies on describing hardware as
an FSM.

In NuSMV, properties are specified in Linear Temporal
Logic (LTL), which is particularly useful for verifying sequen-
tial systems, since LTL extends common logic statements with
temporal clauses. In addition to propositional connectives, such
as conjunction (∧), disjunction (∨), negation (¬), and implica-
tion (→), LTL includes temporal connectives, thus enabling
sequential reasoning. In this paper, we are interested in the
following temporal connectives:

• Xφ – neXt φ: holds if φ is true at the next system state.
• Fφ – Future φ: holds if there exists a future state where φ

is true.
• Gφ – Globally φ: holds if for all future states φ is true.
• φ U ψ – φ Until ψ: holds if there is a future state where ψ

holds and φ holds for all states prior to that.
• φ B ψ – φ Before ψ: holds if the existence of state where

ψ holds implies the existence of an earlier state where φ

holds. This connective can be expressed using U through
the equivalence: φ B ψ≡ ¬(¬φ U ψ).

This set of temporal connectives combined with propositional
connectives (with their usual meanings) allows us to specify
powerful rules. NuSMV works by checking LTL specifications
against the system FSM for all reachable states in such FSM.

3.2 Formally Verified RA

VRASED [15] is a formally verified hybrid (hardware/software
co-design) RA architecture, built as a set of sub-modules, each
guaranteeing a specific set of sub-properties. All VRASED sub-
modules, both hardware and software, are individually verified.
Finally, the composition of all sub-modules is proved to satisfy
formal definitions of RA soundness and security. RA sound-
ness guarantees that an integrity-ensuring function (HMAC in
VRASED’s case) is correctly computed on the exact memory
being attested. Moreover, it guarantees that attested memory
remains unmodified after the start of RA computation, protect-
ing against “hide-and-seek” attacks caused by self-relocating
malware [9]. RA security ensures that RA execution generates
an unforgeable authenticated memory measurement and that
the secret key K used in computing this measurement is not
leaked before, during, or after, attestation.

To achieve aforementioned goals, VRASED software
(SW-Att) is stored in Read-Only Memory (ROM) and relies
on a formally verified HMAC implementation from HACL*
cryptographic library [45]. A typical execution of SW-Att is
carried out as follows:

1. Read challenge Chal from memory region MR.
2. Derive a one-time key from Chal and the attestation mas-

ter key K using an HMAC-based Key Derivation Func-
tion (KDF).

3. Generate an attestation token H by computing an HMAC
over an attested memory region AR using the derived key:

H = HMAC(KDF(K ,MR),AR)
4. Write H into MR and return the execution to unprivileged

software, i.e, normal applications.
VRASED hardware (HW-Mod) monitors 7 MCU signals:

• PC: Current Program Counter value;
• Ren: Signal that indicates if the MCU is reading from

memory (1-bit);
• Wen: Signal that indicates if the MCU is writing to mem-

ory (1-bit);
• Daddr: Address for an MCU memory access;
• DMAen: Signal that indicates if Direct Memory Access

(DMA) is currently enabled (1-bit);
• DMAaddr: Memory address being accessed by DMA.
• irq: Signal that indicates if an interrupt is happening (1-

bit);
These signals are used to determine a one-bit reset signal out-
put. Whenever reset is set to 1 a system-wide MCU reset is trig-
gered immediately, i.e., before the execution of the next instruc-
tion. This condition is triggered whenever VRASED’s hardware
detects any violation of its security properties. VRASED hard-
ware is described in Register Transfer Level (RTL) using Finite
State Machines (FSMs). Then, NuSMV Model Checker [12]
is used to automatically prove that such FSMs achieve claimed
security sub-properties. Finally, the proof that the conjunction
of hardware and software sub-properties implies end-to-end
soundness and security is done using an LTL theorem prover.



More formally, VRASED end-to-end security proof guarantees
that no probabilistic polynomial time (PPT) adversary can win
the RA security game (See Definition 7 in Appendix B) with
non-negligible probability in terms of the security parameter.

4 Proof of Execution (PoX) Schemes
A Proof of Execution (PoX) is a scheme involving two parties:
(1) a trusted verifier V rf, and (2) an untrusted (potentially
infected) remote prover P rv. Informally, the goal of PoX is to
allow V rf to request execution of specific software S by P rv.
As part of PoX, P rv must reply to V rf with an authenticated
unforgeable cryptographic proof (H ) that convinces V rf that
P rv indeed executed S . To accomplish this, verifying H must
prove that: (1) S executed atomically, in its entirety, and that
such execution occurred on P rv (and not on some other device);
and (2) any claimed result/output value of such execution, that
is accepted as legitimate by V rf, could not have been spoofed
or modified. Also, the size and behavior (i.e., instructions) of S ,
as well as the size of its output (if any), should be configurable
and optionally specified by V rf. In other words, PoX should
provide proofs of execution for arbitrary software, along with
corresponding authenticated outputs. Definition 1 specifies
PoX schemes in detail.

We now justify the need to include atomic execution of S in
the definition of PoX. On low-end MCUs, software typically
runs on “bare metal" and, in most cases, there is no mechanism
to enforce memory isolation between applications. Therefore,
allowing S execution to be interrupted would permit other
(potentially malicious) software running on P rv to alter the
behavior of S . This might be done, for example, by an appli-
cation that interrupts execution of S and changes intermediate
computation results in S data memory, thus tampering with
its output or control flow. Another example is an interrupt that
resumes S at different instruction modifying S execution flow.
Such actions could modify S behavior completely via return
oriented programming (ROP).

4.1 PoX Adversarial Model & Security Defini-
tion

We consider an adversary Adv that controls P rv’s entire soft-
ware state, code, and data. Adv can modify any writable mem-
ory and read any memory that is not explicitly protected by
hardware-enforced access control rules. Adv may also have
full control over all Direct Memory Access (DMA) controllers
of P rv. Recall that DMA allows a hardware controller to di-
rectly access main memory (e.g., RAM, flash or ROM) without
going through the CPU.

We consider a scheme PoX = (XRequest, XAtomicExec,
XProve, XVerify) to be secure if the aforementioned Adv has
only negligible probability of convincing V rf that S executed
successfully when, in reality, such execution did not take place,
or was interrupted. In addition we require that, if execution of S

occurs, Adv can not tamper with, or influence, this execution’s
outputs. These notions are formalized by the security game in
Definition 2.

We note that Definition 2 binds execution of S to the time
between V rf issuing the request and receiving the response.
Therefore, if a PoX scheme is secure according to this defini-
tion, V rf can be certain about freshness of the execution. In
the same vein, the output produced by such execution is also
guaranteed to be fresh. This timeliness property is important to
avoid replays of previous valid executions; in fact, it is essential
for safety-critical applications. See Section 7.3 for examples.

Correctness of the Executable: we stress that the purpose
of PoX is to guarantee that S , as specified by V rf, was exe-
cuted. Similar to Trusted Execution Environments targeting
high-end CPUs, such as Intel SGX, PoX schemes do not aim
to check correctness and absence of implementation bugs in
S . As such, it is not concerned with run-time attacks that ex-
ploit bugs and vulnerabilities in S implementation itself, to
change its expected behavior (e.g., by executing S with inputs
crafted to exploit S bugs and hijack its control flow). In partic-
ular, correctness of S need not be assured by the low-end P rv.
Since V rf is a more powerful device and knows S , it has the
ability (and more computational resources) to employ various
vulnerability detection methods (e.g., fuzzing [10] or static
analysis [14]) or even software formal verification (depending
on the level of rigor desired) to avoid or detect implementation
bugs in S . This type of techniques can be performed offline
before sending S to P rv and the whole issue is orthogonal
to the PoX functionality. We also note that, if S needs to be
instrumented for PoX (see Section 5.1 for a discussion on this
requirement), it is important to ensure that this instrumentation
does not introduce any bugs/vulnerabilities into S .

Physical Attacks: physical and hardware-focused attacks
are out of scope of this paper. Specifically, we assume that Adv
can not modify code in ROM, induce hardware faults, or retrieve
P rv secrets via physical presence side-channels. Protection
against such attacks is considered orthogonal and could be
supported via standard physical security techniques [38]. This
assumption is inline with other hybrid architectures [7, 15, 20,
29].

4.2 MCU Assumptions

We assume the same machine model introduced in VRASED
and make no additional assumptions. We review these assump-
tions throughout the rest of this section and then formalize
them as an LTL machine model in Section 6.

Verification of the entire CPU is beyond the scope of this pa-
per. Therefore, we assume the CPU architecture strictly adheres
to, and correctly implements, its specifications. In particular,
our design and verification rely on the following simple ax-
ioms:
A1 – Program Counter (PC): PC always contains the address
of the instruction being executed in a given CPU cycle.



Definition 1 (Proof of Execution (PoX) Scheme).
A Proof of Execution (PoX) scheme is a tuple of algorithms [XRequest,XAtomicExec,XProve,XVerify] performed between P rv and V rf where:

1. XRequestV rf→P rv(S , ·): is an algorithm executed by V rf which takes as input some software S (consisting of a list of instructions {s1,s2, ...,sm}).
V rf expects an honest P rv to execute S . XRequest generates a challenge Chal, and embeds it alongside S , into an output request message asking
P rv to execute S , and to prove that such execution took place.

2. XAtomicExecP rv(ER, ·): an algorithm (with possible hardware-support) that takes as input some executable region ER in P rv’s memory,
containing a list of instructions {i1, i2, ..., im}. XAtomicExec runs on P rv and is considered successful iff: (1) instructions in ER are executed from
its first instruction, i1, and end at its last instruction, im; (2) ER’s execution is atomic, i.e., if E is the sequence of instructions executed between i1
and im, then {e|e ∈ E} ⊆ ER; and (3) ER’s execution flow is not altered by external events, i.e., MCU interrupts or DMA events. The XAtomicExec
algorithm outputs result string O. Note that O may be a default string (⊥) if ER’s execution does not result in any output.

3. XProveP rv(ER,Chal,O, ·): an algorithm (with possible hardware-support) that takes as input some ER, Chal and O and is run by P rv to

output H , i.e., a proof that XRequestV rf→P rv(S , ·) and XAtomicExecP rv(ER, ·) happened (in this sequence) and that O was produced by
XAtomicExecP rv(ER, ·).

4. XVerifyP rv→V rf (H ,O,S ,Chal, ·): an algorithm executed by V rf with the following inputs: some S , Chal, H and O. The XVerify algorithm
checks whether H is a valid proof of the execution of S (i.e., executed memory region ER corresponds to S ) on P rv given the challenge Chal, and if
O is an authentic output/result of such an execution. If both checks succeed, XVerify outputs 1, otherwise it outputs 0.

Remark: In the parameters list, (·) denotes that additional parameters might be included, depending on the specific PoX construction.

Definition 2 (PoX Security Game).
– Let treq denote time when V rf issues Chal← XRequestV rf→P rv(S).
– Let tveri f denote time when V rf receives H and O back from P rv in response to XRequestV rf→P rv.
– Let XAtomicExecP rv(S , treq → tveri f ) denote that XAtomicExecP rv(ER, ·), such that ER ≡ S , was invoked and completed within the time interval
[treq, tveri f ].
– Let O ≡ XAtomicExecP rv(S , treq → tveri f ) denote that XAtomicExecP rv(S , treq → tveri f ) produces output O. Conversely, O 6≡
XAtomicExecP rv(S , treq→ tveri f ) indicates O is not produced by XAtomicExecP rv(S , treq→ tveri f ).
2.1 PoX Security Game (PoX-game): Challenger plays the following game with Adv:

1. Adv is given full control over P rv software state and oracle access to calls to the algorithms XAtomicExecP rv and XProveP rv.
2. At time treq, Adv is presented with software S and challenge Chal.
3. Adv wins in two cases:

(a) None or incomplete execution: Adv produces (HAdv,OAdv), such that XVerify(HAdv,OAdv,S ,Chal, ·) = 1,
without calling XAtomicExecP rv(S , treq→ tveri f ).

(b) Execution with tampered output: Adv calls XAtomicExecP rv(S , treq→ tveri f ) and can produce (HAdv,OAdv),
such that XVerify(HAdv,OAdv,S ,Chal, ·) = 1 and OAdv 6≡ XAtomicExecP rv(S , treq→ tveri f )

2.2 PoX Security Definition:
A PoX scheme is considered secure for security parameter l if, for all PPT adversaries Adv, there exists a negligible function negl such that:

Pr[Adv,PoX-game]≤ negl (l)

A2 – Memory Address: Whenever memory is read or writ-
ten, a data-address signal (Daddr) contains the address of the
corresponding memory location. For a read access, a data read-
enable bit (Ren) must be set, while, for a write access, a data
write-enable bit (Wen) must be set.
A3 – DMA: Whenever the DMA controller attempts to access
the main system memory, a DMA-address signal (DMAaddr)
reflects the address of the memory location being accessed and
a DMA-enable bit (DMAen) must be set. DMA can not access
memory when DMAen is off (logical zero).
A4 – MCU Reset: At the end of a successful reset routine, all
registers (including PC) are set to zero before resuming normal
software execution flow. Resets are handled by the MCU in
hardware. Thus, the reset handling routine can not be modified.
When a reset happens, the corresponding reset signal is set.

The same signal is also set when the MCU initializes for the
first time.
A5 – Interrupts: Whenever an interrupt occurs, the correspond-
ing irq signal is set.

5 APEX: A Secure PoX Architecture
We now present APEX, a new PoX architecture that realizes
the PoX security definition in Definition 2. The key aspect
of APEX is a computer-aided formally verified and publicly
available implementation thereof. This section first provides
some intuition behind APEX’s design. All APEX properties are
overviewed informally in this section and are later formalized
in Section 6.

In the rest of this section we use the term “unprivileged



Definition 3 (Proof of Execution Protocol). APEX instantiates a PoX = (XRequest, XAtomicExec, XProve, XVerify) scheme behaving as follows:

1. XRequestV rf→P rv(S ,ERmin,ERmax,ORmin,ORmax): includes a set of configuration parameters ERmin, ERmax, ORmin, ORmax. The Executable
Range (ER) is a contiguous memory block in which S is to be installed: ER = [ERmin,ERmax]. Similarly, the Output Range (OR) is also configurable
and defined by V rf’s request as OR = [ORmin,ORmax]. If S does not produce any output ORmin = ORmax =⊥. S is the software to be installed in
ER and executed. If S is unspecified (S =⊥) the protocol will execute whatever code was pre-installed on ER on P rv, i.e., V rf is not required to
provide S in every request, only when it wants to update ER contents before executing it. If the code for S is sent by V rf, untrusted auxiliary
software in P rv is responsible for copying S into ER. P rv also receives a random l-bit challenge Chal (|Chal|= l) as part of the request, where l is
the security parameter.

2. XAtomicExecP rv(ER,OR,METADATA): This algorithm starts with unprivileged auxiliary software writing the values of: ERmin, ERmax, ORmin,
ORmax and Chal to a special pre-defined memory region denoted by METADATA. APEX’s verified hardware enforces immutability, atomic
execution and access control rules according to the values stored in METADATA; details are described in Section 5.1. Finally, it begins execution
of S by setting the program counter to the value of ERmin.

3. XProveP rv(ER,Chal,OR): produces proof of execution H . H allows V rf to decide whether: (1) code contained in ER actually executed; (2) ER
contained specified (expected) S ’s code during execution; (3) this execution is fresh, i.e., performed after the most recent XRequest; and (4)
claimed output in OR is indeed produced by this execution. As mentioned earlier, APEX uses VRASED’s RA architecture to compute H by attesting
at least the executable, along with its output, and corresponding execution metadata. More formally:

H = HMAC(KDF(K ,Chal),ER,OR,METADATA, ...) (1)

METADATA also contains the EXEC flag that is read-only to all software running in P rv and can only be written to by APEX’s formally
verified hardware. This hardware monitors execution and sets EXEC = 1 only if ER executed successfully (XAtomicExec) and memory regions of
METADATA, ER, and OR were not modified between the end of ER’s execution and the computation of H . The reasons for these requirements are
detailed in Section 5.2. If any malware residing on P rv attempts to violate any of these properties APEX’s verified hardware (provably) sets EXEC
to zero. After computing H , P rv returns it and contents of OR (O) produced by ER’s execution to V rf.

4. XVerifyP rv→V rf(H ,O,S ,METADATAV rf) : Upon receiving H and O, V rf checks whether H is produced by a legitimate execution of S and
reflects parameters specified in XRequest, i.e., METADATAV rf = Chal||ORmin||ORmax||ERmin||ERmax||EXEC = 1. This way, V rf concludes that
S successfully executed on P rv and produced output O if:

H ≡ HMAC(KDF(K ,ChalV rf ),S ,O,METADATAV rf , ...) (2)

Table 1: Notation

PC Current Program Counter value
Ren Signal that indicates if the MCU is reading from memory (1-bit)
Wen Signal that indicates if the MCU is writing to memory (1-bit)

Daddr Address for an MCU memory access
DMAen Signal that indicates if DMA is currently enabled (1-bit)

DMAaddr Memory address being accessed by DMA, if any
irq Signal that indicates if an interrupt is happening
CR Memory region where SW-Att is stored: CR = [CRmin,CRmax]
MR (MAC Region) Memory region in which SW-Att computation

result is written: MR = [MRmin,MRmax]. The same region is used
to pass the attestation challenge as input to SW-Att

AR (Attested Region) Memory region to be attested. Can be
fixed/predefined or specified in an authenticated request from
V rf: AR = [ARmin,ARmax]

KR (Key Region) Memory region that stores K
XS (Exclusive Stack Region) Exclusive memory region that contains

SW-Att’s stack and can be only accessed by SW-Att
reset A 1-bit signal that reboots/resets the MCU when set to logical 1

ER (Execution Region) Memory region that stores an executable to
be executed: ER = [ERmin,ERmax]

OR (Output Region) Memory region that stores execution output:
OR = [ORmin,ORmax]

EXEC 1-bit execution flag indicating whether a successful execution
has happened

METADATA Memory region containing APEX’s metadata

software” to refer to any software other than SW-Att code
from VRASED. Adv is allowed to overwrite or bypass any
“unprivileged software”. Meanwhile, “trusted software” refers

to VRASED’s implementation of SW-Att (see Section 3) which
is formally verified and can not be modified by Adv, since it
is stored in ROM. APEX is designed such that no changes to
SW-Att are required. Therefore, both functionalities (RA and
PoX, i.e., VRASED and APEX) can co-exist on the same device
without interfering with each other.

Notation is summarized in Table 1.

5.1 Protocol and Architecture

Figure 1: Overview of APEX’s workflow

APEX implements a secure PoX = (XRequest,
XAtomicExec, XProve, XVerify) scheme conforming to



Definition 3. The steps in APEX workflow are illustrated in
Figure 1. The main idea is to first execute code contained
in ER. Then, at some later time, APEX invokes VRASED
verified RA functionality to attest the code in ER and include,
in the attestation result, additional information that allows
V rf to verify that ER code actually executed. If ER execution
produces an output (e.g., P rv is a sensor running ER’s code
to obtain some physical/ambient quantity), authenticity and
integrity of this output can also be verified. That is achieved by
including the EXEC flag among inputs to HMAC computed
as part of VRASED RA. The value of this flag is controlled by
APEX formally verified hardware and its memory can not be
written by any software running on P rv. APEX hardware
module runs in parallel with the MCU, monitoring its behavior
and deciding the value of EXEC accordingly.

Figure 2 depicts APEX’s architecture. In addition to
VRASED hardware that provides secure RA by monitoring a set
of CPU signals (see Section 3.2), APEX monitors values stored
in the dedicated physical memory region called METADATA.
METADATA contains addresses/pointers to memory bound-
aries of ER (i.e., ERmin and ERmax) and memory boundaries of
expected output: ORmin and ORmax. These addresses are sent
by V rf as part of XRequest, and are configurable at run-time.
The code S to be stored in ER is optionally2 sent by V rf.

METADATA includes the EXEC flag, which is initialized
to 0 and only changes from 0 to 1 (by APEX’s hardware) when
ER execution starts, i.e., when the PC points to ERmin. After-
wards, any violation of APEX’s security properties (detailed
in Section 5.2) immediately changes EXEC back to 0. After
a violation, the only way to set the flag back to 1 is to re-start
execution of ER from the very beginning, i.e., with PC=ERmin.
In other words, APEX verified hardware makes sure that EXEC
value covered by the HMAC’s result (represented by H ) is 1,
if and only if ER code executed successfully. As mentioned
earlier, we consider an execution to be successful if it runs
atomically (i.e., without being interrupted), from its first ERmin
to its last instruction ERmax.

In addition to EXEC, HMAC covers a set of parame-
ters (in METADATA memory region) that allows V rf to
check whether executed software was indeed located in ER =
[ERmin,ERmax]. If any output is expected, V rf specifies a mem-
ory range OR = [ORmin,ORmax] for storing output. Contents
of OR are also covered by the computed HMAC, allowing V rf
to verify authenticity of the output of the execution.
Remark: Our notion of successful execution requires S to
have a single exit point – ERmax. Any self-contained code with
multiple legal exits can be trivially instrumented to have a
single exit point by replacing each exit instruction with a jump
to the unified exit point ERmax. This notion also requires S to
run atomically. Since this constraint might be undesirable for
some real-time systems, we discuss how to relax it in Section 8.

2Sending the code to be executed is optional because S might be pre-
installed on P rv. In that case the proof of execution will allow V rf to conclude
that the pre-installed S was not modified and that it was executed.
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Figure 2: HW-Mod composed of APEX and VRASED hardware
modules. Shaded area represents APEX’s METADATA.

In addition, V rf is responsible for defining OR memory region
according to S behavior. OR should be large enough to fit all
output produced by S and OR boundaries should correspond
to addresses where S writes its output values to be sent to V rf.
To ensure freshness of OR content, V rf may enforce ER to
clear OR contents as the first step in its execution. This may be
necessary if not all ER execution paths overwrite OR entirely.

We clarify that requirements for APEX might conflict with
existing memory-based security mechanisms, such as Data Ex-
ecution Prevention (DEP), or (Kernel) Address Space Layout
Randomization (K)ASLR. However, such techniques are appli-
cable to higher-end platforms and are not present on low-end
platforms targeted by APEX (see “Targeted Devices & Scope”
in Section 1).

5.2 APEX’s Sub-Properties at a High-Level

We now describe sub-properties enforced by APEX. Section 6
formalizes them in LTL and provides a single end-to-end defini-
tion of APEX correctness. This end-to-end correctness notion is
provably implied by the composition of all sub-properties. Sub-
properties fall into two major groups: Execution Protection and
Metadata Protection. A violation of any of these properties
implies one or more of:

• Code in ER was not executed atomically and in its en-
tirety;

• Output in OR was not produced by ER execution;
• Code in ER was not executed in a timely manner, i.e.,

after receiving the latest XRequest.
Whenever APEX detects a violation, EXEC is set to 0. Since
EXEC is included among inputs to the computation of HMAC
(conveyed in P rv’s response), it will be interpreted by V rf as
failure to prove execution of code in ER.
Remark: We emphasize that properties discussed below are
required in addition to VRASED verified properties, i.e., these
are entirely different properties used specifically to enforce



PoX security and should not be viewed as replacements for
any of VRASED properties that are used to enforce RA security.

5.2.1 Execution Protection:

EP1 – Ephemeral Immutability: Code in ER can not be mod-
ified from the start of its execution until the end of SW-Att
computation in XProve routine. This property is necessary to
ensure that the attestation result reflects the code that executed.
Lack of this property would allow Adv to execute some other
code ERAdv, overwrite it with expected ER and finally call
XProve. This would result in a valid proof of execution of ER
even though ERAdv was executed instead.
EP2 – Ephemeral Atomicity: ER execution is only considered
successful if ER runs starting from ERmin until ERmax atom-
ically, i.e., without any interruption. This property conforms
with XAtomicExec routine in Definition 1 and with the notion
of successful execution in the context of our work. As discussed
in Section 4, ER must run atomically to prevent malware re-
siding on P rv from interrupting ER execution and resuming it
at a different instruction, or modifying intermediate execution
results in data memory. Without this property, Return-Oriented
Programming (ROP) and similar attacks on ER could change
its behavior completely and unpredictably, making any proof
of execution (and corresponding output) useless.
EP3 – Output Protection: Similar to EP1, APEX must ensure
that OR is unmodified from the time after ER code execution
is finished until completion of HMAC computation in XProve.
Lack of this property would allow Adv to overwrite OR and
successfully spoof OR produced by ER, thus convincing V rf
that it produced output ORAdv.

5.2.2 Metadata Protection:

MP1 - Executable/Output (ER/OR) Boundaries: APEX hard-
ware ensures properties EP1, EP2, and EP3 according to val-
ues: ERmin, ERmax, ORmin, ORmax. These values are config-
urable and can be decided by V rf based on application needs.
They are written into metadata-dedicated physical addresses
in P rv memory before ER execution. Therefore, once ER ex-
ecution starts, APEX hardware must ensure that such values
remain unchanged until XProve completes. Otherwise, Adv
could generate valid attestation results, by attesting [ERmin,
ERmax], while, in fact, having executed code in a different re-
gion: [ERAdv

min , ERAdv
max ].

MP2 - Response Protection: The appropriate response to
V rf’s challenge must be unforgeable and non-invertible. There-
fore, in the XProve routine, K used to compute HMAC must
never be leaked (with non-negligible probability) and HMAC
implementation must be functionally correct, i.e., adhere to
its cryptographic specification. Moreover, contents of memory
being attested must not change during HMAC computation.
We rely on VRASED to ensure these properties. Also, to en-
sure trustworthiness of the response, APEX guarantees that no

software in P rv can ever modify EXEC flag and that, once
EXEC = 0, it can only become 1 if ER’s execution re-starts
afresh.
MP3 - Challenge Temporal Consistency: APEX must ensure
that Chal can not be modified between ER’s execution and
HMAC computation in XProve. Without this property, the
following attack is possible: (1) P rv-resident malware exe-
cutes ER properly (i.e., by not violating EP1-EP3 and MP1-
MP2), resulting in EXEC = 1 after execution stops, and (2) at
a later time, malware receives Chal from V rf and simply calls
XProve on this Chal without executing ER. As a result, mal-
ware would acquire a valid proof of execution (since EXEC
remains 1 when the proof is generated) even though no ER
execution occurred before Chal was received. Such attacks are
prevented by setting EXEC = 0 whenever the memory region
storing Chal is modified.

6 Formal Specification & Verified Implementa-
tion

Our formal verification approach starts by formalizing APEX
sub-properties Linear Temporal Logic (LTL) to define invari-
ants that must hold throughout the MCU operation. We then
use a theorem prover [18] to write a computer-aided proof that
the conjunction of the LTL sub-properties imply an end-to-
end formal definition for the guarantee expected from APEX
hardware. APEX correctness, when properly composed with
VRASED guarantees, yields a PoX scheme secure according to
Definition 2. This is proved by showing that, if the composition
between the two is implemented as described in Definition 3,
VRASED security can be reduced to APEX security.

APEX hardware module is composed of several sub-modules
written in Verilog Hardware Description Language (HDL).
Each sub-module is responsible for enforcing a set of LTL
sub-properties and is described as an FSM in Verilog at Reg-
ister Transfer Level (RTL). Individual sub-modules are com-
bined into a single Verilog design. The resulting composition
is converted to the SMV model checking language using the
automatic translation tool Verilog2SMV [26]. The resulting
SMV is simultaneously verified against all LTL specifications,
using the model checker NuSMV [12], to prove that the final
Verilog of APEX complies with all necessary properties.

6.1 Machine Model
Definition 4 models, in LTL, the behavior of low-end MCUs
considered in this work. It consists of a subset of the machine
model introduced by VRASED. Nonetheless, this subset models
all MCU behavior relevant for stating and verifying correctness
of APEX’s implementation.
Modify_Mem models that a given memory address can

be modified by a CPU instruction or by a DMA access. In
the former, Wen signal must be set and Daddr must contain the
target memory address. In the latter, DMAen signal must be



Definition 4. Machine Model (subset)

1. Modify_Mem(i)→ (Wen ∧Daddr = i)∨ (DMAen ∧DMAaddr = i)
2. Interrupt→ irq
3. MR, CR, AR, KR, XS, and METADATA are non-overlapping

memory regions

set and DMAaddr must contain the target DMA address. The
requirements for reading from a memory address are similar,
except that instead of Wen, Ren must be on. We do not explicitly
state this behavior since it is not used in APEX proofs. For
the same reason, modeling the effects of instructions that only
modify register values (e.g., ALU operations, such as add and
mul) is also not necessary. The machine model also captures
the fact that, when an interrupt happens during execution, the
irq signal in MCU hardware is set to 1.

With respect to memory layout, the model states that MR,
CR, AR, KR, XS, and METADATA are disjoint memory re-
gions. The first five memory regions are defined in VRASED.
As shown in Figure 2, METADATA is a fixed memory region
used by APEX to store information about software execution
status.

6.2 Security & Implementation Correctness

We use a two-part strategy to prove that APEX is a secure PoX
architecture, according to Definition 2:
[A]: We show that properties EP1-EP3 and MP1-MP3, dis-

cussed in Section 5.2 and formally specified next in Sec-
tion 6.3, are sufficient to guarantee that EXEC flag is 1
iff S indeed executed on P rv. To show this, we compose
a computer proof using SPOT LTL proof assistant [18].

[B]: We use cryptographic reduction proofs to show that, as
long as part A holds, VRASED security can be reduced to
APEX’s PoX security from Definition 2. In turn, HMAC’s
existential unforgeability can be reduced to VRASED’s
security [15]. Therefore, both APEX and VRASED rely on
the assumption that HMAC is a secure MAC.

In the rest of this section, we convey the intuition behind
both of these steps. Proof details are in Appendix B.

The goal of part A is to show that APEX’s sub-properties
imply Definition 5. LTL specification in Definition 5 captures
the conditions that must hold in order for EXEC to be set
to 1 during execution of XProve, enabling generation of a
valid proof of execution. This specification ensures that, in
order to have EXEC = 1 during execution of XProve (i.e, for
[EXEC∧PC ∈ CR] to hold), at least once before such time
the following must have happened:

1. The system reached state S0 where software stored in ER
started executing from its first instruction (PC = ERmin).

2. The system eventually reached a state S1 when ER fin-
ished executing (PC = ERmax). In the interval between S0
and S1 PC kept executing instructions within ER, there

were no interrupts, no resets, and DMA remained inactive.
3. The system eventually reached a state S2 when XProve

started executing (PC =CRmin). In the interval between S0
and S2, METADATA and ER regions were not modified.

4. In the interval between S0 and S2, OR region was
only modified by ER’s execution, i.e., PC ∈ ER ∨
¬Modify_Mem(OR).

Figure 3 shows the time windows wherein each memory region
must not change during APEX’s PoX as implied by APEX’s
correctness (Definition 5). Violating any of these conditions
will cause EXEC have value 0 during XProve’s computation.
Consequently, any violation will result in V rf rejecting the
proof of execution since it will not conform to the expected
value of H , per Equation 2 in Definition 3.

The intuition behind the cryptographic reduction (part B) is
that computing H involves simply invoking VRASED SW-Att
with MR = Chal, ER ∈ AR, OR ∈ AR, and METADATA ∈ AR.
Therefore, a successful forgery of APEX’s H implies break-
ing VRASED security. Since H always includes the value of
EXEC, this implies that APEX is PoX-secure (Definition 2).
The complete reduction is presented in Appendix B.

6.3 APEX’s Sub-Properties in LTL

We formalize the necessary sub-properties enforced by APEX
as LTL specifications 3–12 in Definition 6. We describe how
they map to high-level notions EP1-EP3 and MP1-MP3 dis-
cussed in Section 5.2. Appendix B discusses a computer proof
that the conjunction of this set of properties is sufficient to sat-
isfy a formal definition of APEX correctness from Definition 5.

LTL 3 enforces EP1 – Ephemeral immutability by making
sure that whenever ER memory region is written by either CPU
or DMA, EXEC is immediately set to logical 0 (false).

EP2 – Ephemeral Atomicity is enforced by a set of three
LTL specifications. LTL 4 enforces that the only way for ER’s
execution to terminate, without setting EXEC to logical 0, is
through its last instruction: PC = ERmax. This is specified by
checking the relation between current and next PC values using
LTL neXt operator. In particular, if current PC value is within
ER, and next PC value is outside SW-Att region, then either
current PC value is the address of ERmax, or EXEC is set to
0 in the next cycle. Also, LTL 5 enforces that the only way
for PC to enter ER is through the very first instruction: ERmin.
This prevents ER execution from starting at some point in the
middle of ER, thus making sure that ER always executes in
its entirety. Finally, LTL 6 enforces that EXEC is set to zero
if an interrupt happens in the middle of ER execution. Even
though LTLs 4 and 5 already enforce that PC can not change
to anywhere outside ER, interrupts could be programmed to
return to an arbitrary instruction within ER. Although this
would not violate LTLs 4 and 5, it would still modify ER’s
behavior. Therefore, LTL 6 is needed to prevent that.

EP3 – Output Protection is enforced by LTL 7 by making
sure that: (1) DMA controller does not write into OR; (2) CPU



Definition 5. Formal specification of APEX’s correctness.

{
PC = ERmin ∧ [(PC ∈ ER∧¬Interrupt ∧¬reset ∧¬DMAen) U PC = ERmax] ∧
[(¬Modify_Mem(ER)∧¬Modify_Mem(METADATA)∧ (PC ∈ ER∨¬Modify_Mem(OR))) U PC =CRmin]

} B {EXEC∧PC ∈CR}

Definition 6. Sub-Properties needed for Secure Proofs of Execution in LTL.
Ephemeral Immutability:

G : {[Wen ∧ (Daddr ∈ ER)]∨ [DMAen ∧ (DMAaddr ∈ ER)]→¬EXEC} (3)

Ephemeral Atomicity:

G : {(PC ∈ ER)∧¬(X(PC) ∈ ER)→ PC = ERmax ∨¬X(EXEC) } (4)

G : {¬(PC ∈ ER)∧ (X(PC) ∈ ER)→ X(PC) = ERmin ∨¬X(EXEC)} (5)

G : {(PC ∈ ER)∧ irq→¬EXEC} (6)

Output Protection:

G : {[¬(PC ∈ ER)∧ (Wen ∧Daddr ∈ OR)]∨ (DMAen ∧DMAaddr ∈ OR)∨ (PC ∈ ER∧DMAen)→¬EXEC} (7)

Executable/Output (ER/OR) Boundaries & Challenge Temporal Consistency:

G : {ERmin > ERmax ∨ORmin > ORmax→¬EXEC} (8)

G : {ERmin ≤CRmax ∨ERmax >CRmax→¬EXEC} (9)

G : {[Wen ∧ (Daddr ∈METADATA)]∨ [DMAen ∧ (DMAaddr ∈METADATA)]→¬EXEC} (10)

Remark: Note that Chalmem ∈METADATA.

Response Protection:

G : {¬EXEC∧X(EXEC)→ X(PC = ERmin)} (11)

G : {reset→¬EXEC} (12)

treq t(ERmin) t(ERmax) t(CRmin) t(CRmax) tveri f Time

OR
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META
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required by APEX

Unchanged memory
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Figure 3: Illustration of time intervals that each memory re-
gion must remain unchanged in order to produce a valid H
(EXEC = 1). t(X) denotes the time when PC = X .

can only modify OR when executing instructions within ER;
and 3) DMA can not be active during ER execution; otherwise,
a compromised DMA could change intermediate results of
ER computation in data memory, potentially modifying ER
behavior.

Similar to EP3, MP1 – Executable/Output Boundaries
and MP3 – Challenge Temporal Consistency are enforced
by LTL 10. Since Chal as well as ERmin, ERmax, ORmin, and
ORmax are all stored in METADATA reserved memory region,
it suffices to ensure that EXEC is set to logical 0 whenever this
region is modified. Also, LTL 8 enforces that EXEC is only set
to one if ER and OR are configured (by METADATA values
ERmin, ERmax, ORmin, ORmax) as valid memory regions.

Finally, LTLs 11, and 12 (in addition to VRASED verified
RA architecture) are responsible for ensuring MP2- Response
Protection by making sure that EXEC always reflects what
is intended by APEX hardware. LTL 7 specifies that the only
way to change EXEC from 0 to 1 is by starting ER’s execution
over. Finally, LTL 12 states that, whenever a reset happens (this
also includes the system initial booting state) and execution
is initialized, the initial value of EXEC is 0. To conclude,
recall that EXEC is read-only to all software running on P rv.
Therefore, malware can not change it directly.

APEX is designed as a set of seven hardware sub-modules,
each verified to enforce a subset of properties discussed in this



Hardware Reserved Verification
Reg LUT RAM (bytes) # LTL Invariants Verified Verilog LoC Time (s) Mem (MB)

OpenMSP430 [23] 691 1904 0 - - - -
VRASED [15] 721 1964 2332 10 481 0.4 13.6
APEX +VRASED 735 2206 2341 20 1385 183.6 280.3

Table 2: Evaluation results.

section. Examples of implementation of verified sub-modules
as FSMs are discussed in Appendix A.

7 Implementation & Evaluation
APEX implementation uses OpenMSP430 [23] as its open
core implementation. We implement the hardware architecture
shown in Figure 2. In addition to APEX and VRASED modules
in HW-Mod, we implement a peripheral module responsible
for storing and maintaining APEX METADATA. As a periph-
eral, contents of METADATA can be accessed in a pre-defined
memory address via standard peripheral memory access. We
also ensure that EXEC (located inside METADATA) is un-
modifiable in software by removing software-write wires in
hardware. Finally, as a proof of concept, we use Xilinx Vivado
to synthesize an RTL description of the modified HW-Mod and
deploy it on the Artix-7 FPGA class. Prototyping using FPGAs
is common in both research and industry. Once a hardware
design is synthesizable in an FPGA, the same design can be
used to manufacture an Application-Specific Integrated Circuit
(ASIC) on a larger scale.

7.1 Evaluation Results
Hardware & Memory Overhead. Table 2 reports APEX hard-
ware overhead as compared to unmodified OpenMSP430 [23]
and VRASED [15]. Similar to the related work [15–17, 44], we
consider the hardware overhead in terms of additional LUTs
and registers. The increase in the number of LUTs can be used
as an estimate of the additional chip cost and size required for
combinatorial logic, while the number of registers offers an esti-
mate on the memory overhead required by the sequential logic
in APEX FSMs. APEX hardware overhead is small compared
to the baseline VRASED; it requires 2% and 12% additional
registers and LUTs, respectively. In absolute numbers, it adds
44 registers and 302 Look-Up Tables (LUTs) to the underlying
MCU. In terms of memory, APEX needs 9 extra bytes of RAM
for storing METADATA. This overhead corresponds to 0.01%
of MSP430 16-bit address space.
Run-time. We do not observe any overhead for software’s
execution time on the APEX-enabled P rv since APEX does
not introduce new instructions or modifications to the MSP430
ISA. APEX hardware runs in parallel with the original MSP430
CPU. Run-time to produce a proof of S execution includes:
(1) time to execute S (XAtomicExec), and (2) time to compute
an attestation token (XProve). The former only depends on
S behavior itself (e.g., SW-Att can be a small sequence of

instructions or have long loops). As mentioned earlier, APEX
does not affect S run time. XProve’s run-time is linear in the
size of ER+OR. In the worst-case scenario where these re-
gions occupy the entire program 8kBytes memory, XProve
takes around 900ms on an 8MHz device.
Verification Cost. We verify APEX on an Ubuntu 16.04 ma-
chine running at 3.40GHz. Results are shown in Table 2. APEX
verification requires checking 10 extra invariants (shown in
Definition 6) in addition to existing VRASED invariants. It also
consumes significantly higher run-time and memory usage than
VRASED verification. This is because additional invariants in-
troduce five additional variables (ERmin, ERmax, ORmin, ORmax
and EXEC), potentially resulting in an exponential increase in
complexity of the model checking process. Nonetheless, the
overall verification process is still reasonable for a commodity
desktop – it takes around 3 minutes and consumes 280MB of
memory.

7.2 Comparison with CFA
To the best of our knowledge, APEX is the first of its kind
and thus there are no other directly comparable PoX archi-
tectures. However, to provide a (performance and overhead)
point of reference and a comparison, we contrast APEX over-
head with that state-of-the-art CFA architectures. As discussed
in Section 2, even though CFA is not directly applicable for
producing proofs of execution with authenticated outputs, we
consider it to be the closest-related service, since it reports on
the exact execution path of a program.

We consider three recent CFA architectures: Atrium [44],
LiteHAX [16], and LO-FAT [17]. Figure 4.a compares APEX
to these architectures in terms of number of additional LUTs.
In this figure, the black dashed line represents the total cost of
the MSP430 MCU: 1904 LUTs. Figure 4.b presents a similar
comparison for the amount of additional registers required by
these architectures. In this case, the total cost of the MSP430
MCU itself is of 691 registers. Finally, Figure 4.c presents
the amount of dedicated RAM required by these architectures
(APEX’s dedicated RAM corresponds to the exclusive access
stack implemented by VRASED).

As expected, APEX incurs much lower overhead. According
to our results, the cheapest CFA architecture, LiteHAX, would
entail an overhead of nearly 100% LUTs and 300% registers,
on MSP430. In addition, LiteHAX would require 150 kB of
dedicated RAM. This amount far exceeds entire addressable
memory (64 kB) of 16-bit processors, such as MSP430. Results
support our claim that CFA is not applicable to this class of low-



end devices. Meanwhile, APEX needs a total of 12% additional
LUTs and 2% additional registers. VRASED requires about 2
kB of reserved RAM, which is not increased by APEX PoX
support.

7.3 Proof of Concept: Authenticated Sensing
and Actuation

As discussed in Section 1 an important functionality attainable
with PoX is authenticated sensing/actuation. In this section, we
demonstrate how to use APEX to build sensors and actuators
that “can not lie”.

As a running example we use a fire sensor: a safety-critical
low-end embedded device commonly present in households
and workplaces. It consists of an MCU equipped with analog
hardware for measuring physical/chemical quantities, e.g., tem-
perature, humidity, and CO2 level. It is also usually equipped
with actuation-capable analog hardware, such as a buzzer. Ana-
log hardware components are directly connected to MCU Gen-
eral Purpose Input/Output (GPIO) ports. GPIO ports are physi-
cal wires directly mapped to fixed memory locations in MCU
memory. Therefore, software running on the MCU can read
physical quantities directly from GPIO memory.

In this example, we consider that MCU software periodically
reads these values and transmits them to a remote safety author-
ity, e.g., a fire department, which then decides whether to take
action. The MCU also triggers the buzzer actuator whenever
sensed values indicate a fire. Given the safety-critical nature
of this application, the safety authority must be assured that
reported values are authentic and were produced by execution
of expected software. Otherwise, malware could spoof such
values (e.g., by not reading them from the proper GPIO). PoX
guarantees that reported values were read from the correct
GPIO port (since the memory address is specified by instruc-
tions in the ER executable), and produced output (stored in OR)
was indeed generated by execution of ER and was unmodified
thereafter. Thus, upon receiving sensed values accompanied by
a PoX, the safety authority is assured that the reported sensed
value can be trusted.

As a proof of concept, we use APEX to implement a sim-
ple fire sensor that operates with temperature and humidity
quantities. It communicates with a remote V rf (e.g., the fire
department) using a low-power ZigBee radio3 typically used by
low-end CPS/IoT devices. Temperature and humidity analog
devices are connected to a APEX-enabled MSP430 MCU run-
ning at 8MHz and synthesized using a Basys3 Artix-7 FPGA
board. As shown in Figure 5, MCU GPIO ports connected to
the temperature/humidity sensor and to the buzzer. APEX is
used to prove execution of the fire sensor software. This soft-
ware is shown in Figure 8a in Appendix C. It consists of two
main functions: ReadSensor and SoundAlarm. Proofs of
execution are requested by the safety authority via XRequest

3https://www.zigbee.org/

to issue commands to execute these functions. ReadSensor
reads and processes the value generated by temperature/humid-
ity analog device memory-mapped GPIO, and copies this value
to OR. The SoundAlarm function turns the buzzer on for 2
seconds, i.e., it writes “1” to the memory address mapped to
the buzzer, busy-waits for 2 seconds, and then writes “0” to
the same memory location. This implementation corresponds
to the one in the open-source repository 4 and was ported to
a APEX-enabled MCU. The porting effort was minimal: it
involved around 30 additional lines of C code, mainly for re-
implementing sub-functions originally implemented as shared
APIs, e.g., digitalRead/Write. Finally, we transformed
ported code to be compatible with APEX’s PoX architecture.
Details can be found in Appendix C.

8 Limitations & Future Directions
In the following we discuss some limitations in APEX current
approach and directions for future work.

Shared libraries. In order to produce a valid proof, V rf
must ensure that execution of S does not depend on external
code located outside the executable range ER (e.g., shared
libraries). A call to such code would violate LTL 4, resulting in
EXEC = 0 during the attestation computation. To support this
type of executable one can transform it into a self-contained
executable by statically linking all dependencies during the
compilation time.

Self-modifying code (SMC). SMC is a type of executable
that alters itself while executing. Clearly, this executable type
violates LTL 3 that requires code in ER to remain unchanged
during ER’s execution. It is unclear how APEX can be adapted
to support SMC; however, we are unaware of any legitimate
and realistic use-case of SMC in our targeted platforms.

Atomic Execution & Interrupts. The notion of successful
execution, defined in Section 5.1, prohibits interruptions during
S ’s execution. This limitation can be problematic especially
on systems with strict real-time constraints. In this case, the
PoX executable might be interrupted by a higher priority task
and, in order to provide a valid proof of execution, execution
must start over. On the other hand, simply resuming S exe-
cution after an interrupt may result in attacks where malware
modifies intermediate execution results, in data memory, con-
sequently influencing the correctness of this execution’s output.
One possible way to remedy this issue is to allow interrupts
as long as all interrupt handlers are: (1) themselves immutable
and uninterruptible from the start of execution until the end of
attestation; and (2) included in the attested memory range dur-
ing the attestation process. V rf could then use the PoX result
H to determine whether an interrupt that may have happened
during the execution is malicious. This idea needs to be ex-
amined carefully, because even the accurate definition of PoX
correctness and security in this case becomes challenging. The

4https://github.com/Seeed-Studio/LaunchPad_Kit
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Figure 5: Hardware setup for a fire sensor using APEX

practicality and formal security analysis of such an approach
also remain an open problem that we defer to future work.

Future Directions. There is a number of interesting future
directions related to PoX. Developing formally verified PoX
architectures for high-end devices is an interesting challenge.
While architectures based on Flicker [34] and SGX [25] can
provide PoX on high-end devices, the trusted components in
these architectures (i.e., TPM and processor’s architectural
support) are not yet verified. It would also be interesting to
investigate whether APEX can be designed and implemented
as a standalone device (e.g., a tiny verified TPM-alike device)
that can be plugged into legacy low-end devices. Feasibility
and cost-effectiveness of this approach require further investi-
gation; this is because hybrid-architectures (such as SMART,
VRASED, and APEX) monitor internal MCU signals (e.g., PC,
or DMA signals) that are not exposed to external devices via
communication/IO channels. It would also be interesting to
see what kinds of trusted applications can be bootstrapped and
built on top of a PoX service for low-end devices. Finally, in
the near-future, we plan to look into techniques that can auto-
matically transform legacy code into PoX-compatible software
(see Appendix C) and to investigate how to enable stateful

PoX, where one large PoX code could be broken down into
multiple smaller pieces of atomic code and secure interruptions
are allowed in between the execution of two pieces.

9 Conclusion
This paper introduces APEX, a novel and formally verified se-
curity service targeting low-end embedded devices. It allows
a remote untrusted prover to generate unforgeable proofs of
remote software execution. We envision APEX’s use in many
IoT application domains, such as authenticated sensing and
actuation. Our implementation of APEX is realized on a real
embedded system platform, MSP430, synthesized on an FPGA,
and the verified implementation is publicly available. Our eval-
uation shows that APEX has low overhead for both hardware
footprint and time for generating proofs of execution.
Acknowledgements: The authors thank the designated shep-
herd (Dr. Sven Bugiel) for his guidance, and the anonymous
reviewers for their valuable feedback. UC Irvine authors’ work
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APPENDIX

A Sub-Module Verification
APEX is designed as a set of seven sub-modules. We now de-
scribe APEX’s verified implementation, by focusing on two
of these sub-modules and their corresponding properties. The
Verilog implementation of omitted sub-modules is available
in [1]. Each sub-module enforces a sub-set of the LTL specifi-
cations in Definition 6. As discussed in Section 6, sub-modules
are designed as FSMs. In particular, we implement them as
Mealy FSMs, i.e, their output changes as a function of both the
current state and current input values. Each FSM takes as input
a subset of the signals shown in Figure 2 and produces only
one output – EXEC – indicating violations of PoX properties.

To simplify the presentation, we do not explicitly represent
the value of EXEC for each state transition. Instead, we define
the following implicit representation:

1. EXEC is 0 whenever an FSM transitions to NotExec
state.

2. EXEC remains 0 until a transition leaving NotExec state
is triggered.

3. EXEC is 1 in all other states.
4. Sub-modules composition: Since all PoX properties

must simultaneously hold, the value of EXEC produced
by APEX is the conjunction (logical AND) of all sub-
modules’ individual EXEC flags.

NotExec

notER

f stER

midER

lastER

otherwise

PC = ERmin ∧¬ irq

(PC < ERmin ∨ PC > ERmax)

PC = ERmin ∧ ¬ irq
otherwise

PC = ERmin
∧¬ irq

(PC > ERmin ∧ PC < ERmax)
∧¬ irq

otherwise

(PC > ERmin ∧ PC < ERmax)
∧¬ irq

PC = ERmax ∧ ¬ irqotherwise

PC = ERmax
∧¬ irq

(PC < ERmin ∨ PC > ERmax)
∧¬ irq

otherwise

Figure 6: Verified FSM for LTLs 4-6, a.k.a., EP2- Ephemeral
Atomicity.

Figure 6 represents a verified model enforcing LTLs 4-6,
corresponding to the high-level property EP2- Ephemeral
Atomicity. The FSM consists of five states. notER and midER
represent states when PC is: (1) outside ER, and (2) within
ER respectively, excluding the first (ERmin) and last (ERmax)
instructions. Meanwhile, f stER and lstER correspond to states
when PC points to the first and last instructions, respectively.

Run NotExec

otherwise otherwise

[Wen ∧ (Daddr ∈METADATA)]∨
[DMAen ∧ (DMAaddr ∈METADATA)]

PC = ERmin∧
¬[Wen ∧ (Daddr ∈METADATA)]∧

¬[DMAen ∧ (DMAaddr ∈METADATA)]

Figure 7: Verified FSM for LTL 10, a.k.a., MP3- Challenge
Temporal Consistency.

The only possible path from notER to midER is through f stER.
Similarly, the only path from midER to notER is through lstER.
A transition to the NotExec state is triggered whenever: (1) any
sequence of values for PC do not follow the aforementioned
conditions, or (2) irq is logical 1 while PC is inside ER. Lastly,
the only way to transition out of the NotExec state is to restart
ER’s execution.

Figure 7 shows the FSM verified to comply with LTL 10
(MP3- Challenge Temporal Consistency). The FSM has two
states: Run and NotExec. The FSM transitions to the NotExec
state and outputs EXEC = 0 whenever a violation happens, i.e.,
whenever METADATA is modified in software. It transitions
back to Run when ER’s execution is restarted without such
violation.

B Proofs of Implementation Correctness & Se-
curity

In this section we discuss the computer proof for APEX’s imple-
mentation correctness (Theorem 1) and the reduction, showing
that APEX is a secure PoX architecture as long as VRASED is
a secure RA architecture (Theorem 2). A formal LTL computer

Theorem 1. Definition 4∧LTLs 3 –12→ Definition 5.

proof for Theorem 1 is available at [1]. We here discuss the
intuition behind such proof. Theorem 1 states that LTLs 3 –
12, when considered in conjunction with the machine model in
Definition 4, imply APEX’s implementation correctness.

Recall that Definition 5 states that, in order to have EXEC =
1 during the computation of XProve, at least once before such
event (EXEC = 1) the following must have happened:

1. The system reached state S0 in which the software stored
in ER started executing from its first instruction (PC =
ERmin).

2. The system eventually reached a state S1 when ER fin-
ished executing (PC = ERmax). In the interval between S0
and S1 PC remained executing instructions within ER, and
there were no interrupts, no resets, and DMA remained
inactive.

3. The system eventually reached a state S2 when XProve
started executing (PC =CRmin). In the interval between



S0 and S2 the memory regions of METADATA and ER
were not modified.

4. In the interval between S0 and S2 the OR memory region
was only modified by ER’s software execution (PC ∈
ER∨¬Modify_Mem(OR)).

The first two properties to be noted are LTL 12 and LTL 11.
LTL 12 establishes the default state of EXEC is 0. LTL 11
enforces that the only possible way to change EXEC from 0 to
1 is by having PC = ERmin. In other words, EXEC is 1 during
the computation of XProve only if, at some point before that,
the code stored in ER started to execute (state S0).

To see why state S1 (when ER execution finishes, i.e., PC =
ERmax) is reached with ER executing atomically until then, we
look at LTLs 4, 5, 6, and 9. LTLs 4, 5 and 6 enforce that PC
will stay inside ER until S1 or otherwise EXEC will be set to
0. On the other hand, it is impossible to execute instructions
of XProve (PC ∈ CR) without leaving ER, because LTL 9
guarantees that ER and CR do not overlap, or EXEC = 0.

So far we have argued that to have a token H that reflects
EXEC = 1 the code contained in ER must have executed suc-
cessfully. What remains to be shown is: producing this token
implies the code in ER and METADATA are not modified in
the interval between S0 and S2 and only ER’s execution can
modify OR in the same time interval.

Clearly, the contents of ER can not be modified after S0
because Modify_Mem(ER) directly implies that LTL 3 will
set EXEC = 0. The same reasoning is applicable for modifica-
tions to METADATA region with respect to LTL 10. The same
argument applies to modifying OR, with the only exception
that OR modifications are allowed only by the CPU and when
PC ∈ ER (LTL 7). This means that OR can only be modified by
the execution of ER. In addition, LTL 7 also ensures that DMA
is disabled during the execution of ER to prevent unauthorized
modification of intermediate results in data memory. There-
fore, the timeline presented in Figure 3 is strictly implied by
APEX’s implementation. This concludes the reasoning behind
Theorem 1.

Proof. (Theorem 2) Assume that AdvPoX is an adversary capable
of winning the security game in Definition 2 against APEX with more
than negligible probability. We show that, if such AdvPoX exists, then
it can be used to construct (in a polynomial number of steps) AdvRA
that wins VRASED’s security game (Definition 7) with more than
negligible probability. Therefore, by contradiction, nonexistence of
AdvRA (i.e., VRASED’s security) implies nonexistence of AdvPoX
(APEX’s security).

First we recall that, to win APEX’s security game, AdvPoX must
provide (HAdv, OAdv), such that XVerify(HAdv,OAdv,S ,Chal, ·) = 1.
To comply with conditions 3.a and 3.b in Definition 2, this must be
done in either of the following two ways:

Case1 AdvPoX does not execute S in the time window between treq

and tveri f (i.e., ¬XAtomicExecP rv(S , treq→ tveri f )).

Case2 AdvPoX calls XAtomicExecP rv(S , treq → tveri f ) but modi-
fies its output O in between the time when the execution of S
completes and the time when XProve is called.

Theorem 2. APEX is secure according to Definition 2 as long as
VRASED is a secure RA architecture according to Definition 7.

Definition 7. VRASED’s Security Game [15]
7.1 RA Security Game (RA-game):
Notation:
- l is the security parameter and |K |= |Chal|= |MR|= l
- AR(t) denotes the content of AR at time t
RA-game:

1. Setup: Adv is given oracle access to SW-Att calls.
2. Challenge: A random challenge Chal← ${0,1}l is gener-

ated and given to Adv.
3. Response: Adv responds with a pair (M,σ), where σ is ei-

ther forged by Adv, or is the result of calling SW-Att at some
arbitrary time t.

4. Adv wins if and only if M 6= AR(t) and σ =
HMAC(KDF(K ,Chal),M).

7.2 RA Security Definition:
An RA scheme is considered secure if for all PPT adversaries Adv,
there exists a negligible function negl such that:

Pr[Adv,RA-game]≤ negl (l)

However, according to the specification of APEX’s XVerify algorithm
(see Definition 3), a token HAdv will only be accepted if it reflects an
input value with EXEC = 1, as expected by V rf. In APEX’s imple-
mentation, O is stored in region OR and S in region ER. Moreover,
given Theorem 1, we know that having EXEC = 1 during XProve
implies three conditions have been fulfilled:

Cond1 The code in ER executed successfully.

Cond2 The code in ER and METADATA were not modified after
starting ER’s execution and before calling XProve.

Cond3 Outputs in OR were not modified after completing ER’s
execution and before calling XProve.

The third condition rules out the possibility of Case2 since that case
assumes Adv can modify O, resided in OR, after ER execution and
EXEC stays logical 1 during XProve. We further break down Case1
into three sub-cases:

Case1.1 AdvPoX does not follow Cond1-Cond3. The only way
for AdvPoX to produce (HAdv, OAdv) in this case is not to call
XProve and directly guess H .

Case1.2 AdvPoX follows Cond1-Cond3 but does not execute S
between treq and tveri f . Instead, it produces (HAdv, OAdv) by
calling:

OAdv ≡ XAtomicExecP rv(ERAdv, treq→ tveri f ) (13)

where ERAdv is a memory region different from the one spec-
ified by V rf on XRequest (AdvPoX can do this by modifying
METADATA to different values of ERmin and ERmax before
calling XAtomicExec).

Case1.3 Similar to Case1.2, with ERAdv being the same region
specified by V rf on XRequest, but instead containing a different
executable SAdv.

We show that an adversary that succeeds in any of these cases
can be used win VRASED’s security game. To see why this is the
case, we note that APEX’s XProve function is implemented by using
VRASED’s SW-Att. SW-Att covers memory regions MR (challenge
memory) and AR (attested region). Hence, APEX instantiates these
memory regions as:



1 # d e f i n e P4IN ( * ( v o l a t i l e u n s i g n e d c h a r * ) 0x001C )
2 # d e f i n e P4OUT ( * ( v o l a t i l e u n s i g n e d c h a r * ) 0x001D )
3 # d e f i n e P4DIR ( * ( v o l a t i l e u n s i g n e d c h a r * ) 0x001E )
4 # d e f i n e P4SEL ( * ( v o l a t i l e u n s i g n e d c h a r * ) 0x001F )
5 # d e f i n e BIT4 (0 x0010 )
6 # d e f i n e MAXTIMINGS 85
7 # d e f i n e OR 0xEEE0 / / OR i s i n AR
8 # d e f i n e HIGH 0x1
9 # d e f i n e LOW 0x0

10 # d e f i n e INPUT 0x0
11 # d e f i n e OUTPUT 0x1
12 _ _ a t t r i b u t e _ _ ( ( s e c t i o n (".exec.entry" ) , naked ) ) void ReadSens o rEn t ry

( ) {
13 // ERmin
14 ReadSensor ( ) ;
15 __asm__ volatile ( "br #__exec_leave" "\n\t" ) ;
16 }
17 _ _ a t t r i b u t e _ _ ( ( s e c t i o n (".exec.body" ) ) ) int d i g i t a l R e a d ( ) {
18 if ( P3IN & BIT4 ) return HIGH ;
19 else return LOW;
20 }
21 _ _ a t t r i b u t e _ _ ( ( s e c t i o n (".exec.body" ) ) ) void d i g i t a l W r i t e ( u i n t 8 _ t v a l

) {
22 if ( v a l == LOW)
23 P3OUT &= ~BIT4 ;
24 else
25 P3OUT | = BIT4 ;
26 }
27 _ _ a t t r i b u t e _ _ ( ( s e c t i o n (".exec.body" ) ) ) void pinMode ( u i n t 8 _ t v a l ) {
28 if ( v a l == INPUT )
29 P3DIR &= ~BIT4 ;
30 else if ( v a l == OUTPUT)
31 P3DIR | = BIT4 ;
32 }
33
34 _ _ a t t r i b u t e _ _ ( ( s e c t i o n (".exec.body" ) ) ) void ReadSensor ( ) {
35 // Tell the sensor that we are about to read
36 d i g i t a l W r i t e (HIGH) ;
37 delayMS ( 2 5 0 ) ;
38 pinMode (OUTPUT) ;
39 d i g i t a l W r i t e (LOW) ;
40 delayMS ( 2 0 ) ;
41 d i g i t a l W r i t e (HIGH) ;
42 d e l a y M i c r o s e c o n d s ( 4 0 ) ;
43 pinMode ( INPUT ) ;
44 u i n t 8 _ t l a s t s t a t e = HIGH , c o u n t e r = 0 , j = 0 , i ;
45 u i n t 8 _ t d a t a [ 5 ] = { 0 } ;
46 // Read the sensor’s value
47 for ( i =0 ; i < MAXTIMINGS; i ++) {
48 c o u n t e r = 0 ;
49 while ( d i g i t a l R e a d ( ) == l a s t s t a t e ) {
50 c o u n t e r ++;
51 if ( c o u n t e r == 255) {
52 break ;
53 }
54 }
55 l a s t s t a t e = d i g i t a l R e a d ( ) ;
56 if ( c o u n t e r == 255) break ;
57 if ( ( i >= 4) && ( i%2 == 0) ) {
58 d a t a [ j / 8 ] <<= 1 ;
59 if ( c o u n t e r > 100) {
60 d a t a [ j / 8 ] | = 1 ;
61 avg += c o u n t e r ;
62 k ++;
63 }
64 j ++;
65 }
66 }
67 // Copy the reading to OR
68 memcpy (OR, da t a , 5 ) ;
69 }
70
71 _ _ a t t r i b u t e _ _ ( ( s e c t i o n (".exec.exit" ) , naked ) ) void R e a d S e n s o r E x i t ( )

{
72 __asm__ volatile ("ret" "\n\t" ) ;
73 // ERmax
74 }

(a) Fire Sensor’s code written in C
1 . . .
2 SECTIONS
3 {
4 . . .
5 . t e x t :
6 {
7 . . .
8 * ( . exec . e n t r y )
9 . = ALIGN ( 2 ) ;

10 * ( . exec . body )
11 . = ALIGN ( 2 ) ;
12 PROVIDE ( _ _ e x e c _ l e a v e = . ) ;
13 * ( . exec . e x i t )
14 } > REGION_TEXT
15 . . .
16 }
17 . . .

(b) Linker script

Figure 8: Code snippets for (a) fire sensor described in Sec-
tion 7.3 (b) linker script

1. MR = Chal;
2. ER⊂ AR;
3. OR⊂ AR;
4. METADATA⊂ AR;
Doing so ensures that all sensitive memory regions used by APEX

are included among the inputs to VRASED’s attestation. Let X(t)
denote the content in memory region X at time t. AdvRA can then be
constructed using AdvPoX as follows:

1. AdvRA receives Chal from the challenger in step (2) of RA
security game of Definition 7.

2. At arbitrary time t, AdvRA has 3 options to write AR(t)=ARAdv

and call AdvPoX:
(a) Modify ER(t) 6= S or OR(t) 6= O or METADATA(t) 6=

METADATAV rf . It then calls AdvPoX in Case1.1.
(b) Modify ER to be different from the range chosen by

V rf. Therefore, METADATA(t) 6= METADATAV rf . It
then calls AdvPoX in Case1.2.

(c) Modify ER(t) to be different from S . It then calls AdvPoX
in Case1.3.

In any of these options, AdvRA will produce (HAdv,OAdv), such
that XVerify(HAdv,OAdv,S ,Chal, ·) = 1 with non-negligible
probability.

3. AdvRA replies to the challenger with the pair (M,HAdv), where
M corresponds to the values of S , O and METADATAV rf ,
matching HAdv and OAdv generated by AdvPoX. By construc-
tion M 6= ARAdv = AR(t), as required by Definition 7.

4. Challenger will accept (M,HAdv) with the same non-negligible
probability that AdvPoX has of producing (HAdv,OAdv) such
that XVerify(HAdv,OAdv,S ,Chal, ·) = 1.

C Software Transformation
Recall that the notion of successful execution (in Section 5.1)
requires the executable’s entry point to be at the first instruction
in ER and the exit point to be at the last instruction in ER. In
this section, we discuss how to efficiently transform arbitrary
software to conform with this requirement.

Lines 10-17 of Figure 8.a show a (partial) implementation of
the ReadSensor function described in Section 7.3. This im-
plementation, when converted to an executable, does not meet
APEX’s executable requirement, since the compiler may choose
to place one of its sub-functions (instead of ReadSensor)
as the entry and/or exit points of the executable. One way to
fix this issue is to implement all of its sub-functions as inline
functions. However, this may be inefficient; in this example,
it would duplicate the code of the same sub-functions (e.g.,
digitalWrite) inside the executable.

Instead, we create dedicated functions for entry (Line 1-
4) and exit (Line 6-8) points, and assign those functions to
separate executable sections: “.exec.entry” for the entry and
“.exec.exit” for the exit. Then, we label all sub-functions used
by ReadSensor as well as ReadSensor itself to the same
section – “.exec.body” – and modify the MSP430 linker to
place “.exec.body” between “.exec.entry” and “.exec.exit” sec-
tions. The modified linker script is shown in Figure 8.b.


