
In-app Cryptographically-Enforced Selective Access
Control for Microsoft Office and Similar Platforms //

(Extended Version)

Karim Eldefrawy1?, Tancrede Lepoint2??, and Laura Tam1

1 SRI International
333 Ravenswood Ave, Menlo Park, CA 94025
{karim.eldefrawy,laura.tam}@sri.com

2 No affiliation
crypto@tancre.de

Abstract. The interplay between cryptography and access control has been widely
investigated in the literature. For example, attribute-based encryption (ABE) is a
leading candidate of a cryptographic tool going beyond the all-or-nothing ap-
proach of public-key encryption by supporting fine-grained access control for
encrypted data. Unfortunately, the deployment and adoption of ABE have been
slow, and (to the best of our knowledge) few commercial widely-used products
use ABE to date, especially in settings involving national security or regulated
industries. In particular, selective and fine-grained control over what is shared,
and with whom, is absent from common data products and formats, such as those
generated by commercial authoring products, e.g., Microsoft Word documents,
Excel spreadsheets, PowerPoint slides. This lack of selective and fine-grained
control results in users simply not sharing. This major usability shortcoming im-
pacts defense and military coalition operations, as well as commercial settings,
such as life sciences, healthcare, and the financial sectors.

This paper addresses the above usability problem head-on by proposing a crypto-
graphically enforced selective access control in Microsoft Office products and
similar platforms. We focus on Excel as an illustrative use-case, but note that our
work is applicable to (and is already implemented for) other Microsoft products
such as Word, PowerPoint, and Outlook. Using the JavaScript API for Microsoft
Office, we designed and developed simple add-ins that enable cell encryption
according to a policy, and requires a key that embeds attributes satisfying the
policy in order to decrypt. Our performance evaluation not only shows that cryp-
tographically enforced selective sharing of information in widely-deployed and
widely-used commercial authoring and collaboration platforms is possible, but
also practical. We also address deployment options of a larger system to operate
such add-ins, and the integrations required with different systems in an enter-
prise’s infrastructure.

? Contact author.
?? Work performed while at SRI International.

1 Introduction

Secure sharing of sensitive and/or private data remains as of today a critical challenge
for individuals, teams, enterprises, and (inter)national organizations, and governments.
While sharing data is essential, sharing sensitive data with the wrong entity can have
devastating consequences or even be prohibited by regulations and laws [2, Sec. 1201].
Fortunately, the literature is rich with cryptographically-enforced access control solu-
tions. A cryptographic primitive that naturally lends itself to fine-grained access con-
trol is that of attribute-based encryption (ABE) [25]. In ABE, ciphertexts and keys are
associated with attributes which determine when decryption is possible. In a cipher-
text-policy ABE (CP-ABE) [13], keys are associated with attributes, for example, in a
collaboration involving NATO countries, one can imagine the following attributes as-
signed to a user ‘(continent = Europe) (trust = 2) (org = NATO)’,
while ciphertexts are associated with access policies such as ‘((continent ==
Europe) AND (org == NATO)) OR (trust > 3)’. Decryption is only pos-
sible when the key attributes satisfy the policy.

In the above example the user can decrypt because their continent = Europe
and org = NATO attributes satisfy the first AND clause in the ciphertext policy. Note
that the encryptor does not need to know exact identities of other entities that should
be able to access the data, but rather determine them in term of descriptive attributes.
Would they be issued keys, countries like France, Italy, or Belgium would be able to
decrypt, while Sweden or Finland would not (they are not members of NATO) unless
their key embeds an attribute trust larger or equal to 4.

Over the past decade, ABE has led to a multitude of applications, from network
privacy to health record access-control and secure messaging. While companies like
Zeutro [8] started investigating the use of ABE in cloud-based applications, to date,
the deployment of ABE has been slow. This may be explained by a variety of rea-
sons. Amongst them, (1) it became clear that ABE schemes need to readily accom-
modate new roles, attributes, and access policies to be used; and (2) real-world appli-
cations of ABE require strong security guarantees under realistic and natural attack
models. Thankfully, these initial concerns have been addressed. The first requirement
has been achieved in 2011 by Lewko and Waters [21] in what is called unbounded
ABE (that is, an ABE that is not bounded in the number of attributes it can handle).
Since then, unbounded ABE constructions have been widely improved and made ef-
ficient [20,23,24,11,19,12,18,9,15]. As for the security concern, recent ABE schemes
are based on well-understood security assumptions against active adversaries [14,9,15],
and rely on asymmetric prime-order (Type-III) pairings, the recommended choice by
cryptography experts [17].

In most commercially deployed settings today, fine-grained access control is not
achieved by cryptographic means. When selective access control is available (e.g., the
privacy controls proposed by Facebook, or even in online Excel workbooks [7]), it typ-
ically relies on a (replicated) trusted centralized system that shares with a recipient the
data she is authorized to see. To selectively share information that is contained in the
most used document formats without a centralized system (e.g., docx for text, jpeg
for images, xlsx for spreadsheets, or pptx for presentations), the commonly used
process is to manually remove sensitive information and produce multiple versions of

2

the same file while selecting content in each version that depends on the recipient of
that version. In our extensive discussions with entities in the defense community, we
learned that Microsoft Office has become a de facto means of sharing information be-
tween countries or agencies, and that the lack of selective access control within results
in people simply not sharing. For example, this major usability shortcoming impacts
DoD coalition operations in the U.S. This problem is not restricted to the defense set-
ting: analogous problems can easily be identified in commercial settings in other sec-
tors such as the finance, healthcare, and pharmaceuticals. Additionally, both military
computers and company-owned computers are often subject to strict conditions or re-
strictions regarding the softwares that can be installed and run.

Motivated by this state of affairs, this paper addresses the usability problem de-
scribed above head-on, by showing that fine-grained cryptographically-enforced access
control solutions can be made available and simple to use in widely-deployed products.
This paper introduces a Microsoft Excel add-in that enables cell3 encryption accord-
ing to policies. The add-in is a single-page web application written in JavaScript that
interacts with the object models in Excel using the JavaScript API for Office [1]. In
our prototype, a minimal locally-hosted service (dockerized and running on a user’s
device), accessible through a REST API, enables one to encrypt and decrypt using a
CP-ABE scheme; such a dockerized service is just to simplify our development and
experimentation. We stress that in a production deployment (see Section 6), the entire
encryption and decryption could/should be performed on the client-side in the add-in
webpage itself via JavaScript. We verified that this is possible and already started im-
plemented this in a new version of the add-ins. After encryption, the document remains
a valid Excel document and can be opened and read (without the encrypted cells) as any
other xlsx document by any software. More precisely, the encrypted cells are stored
in an XML custom part of the xlsx document through the JavaScript API. When our
add-in is loaded from the Microsoft Excel software (or, e.g., from the Online Excel of
Office 365) by a user in possession of a CP-ABE key, all the cells with a policy satisfi-
able by the key attributes will be decrypted and displayed. Henceforth, the same xlsx
document can be shared with a wide audience while enabling selective access control
at a cell level.

Organization: The outline of the paper is as follows. Section 2 introduces some
necessary background on Microsoft Office add-ins and CP-ABE. Section 3 presents
our Excel add-in, and a performance evaluation is presented in Section 4. Section 5 dis-
cusses potential alternative options for short-term adoption of similar selective sharing
functionality based on standardized encryptions schemes but with some limitations. In
section Section 6 we discuss deployment options and required integrations with differ-
ent parts of an enterprise’s infrastructure. Section 7 discusses developing add-ins and
extensions for other platforms, and briefly some overviews challenges facing this for
certain platforms. Finally, we conclude the paper and discuss future work in Section 8.

3 The latest version of the system now enables row, and/or column, or full document encryption.

3

2 Preliminaries

This section provides some common background and notation on Office add-ins, ciphertext-
policy attribute-based encryption (CP-ABE), and the Charm framework.

2.1 Microsoft Office Add-In

An Office add-in is a web application that is loaded from a browser inside of an Office
application (desktop and online). An add-in is not installed on the host, but has its
implementation hosted on a web server. Add-ins can be added in an Office application
either by providing a XML manifest file (with the URL of the web application), or
through the Office store.

As with any web services, add-ins can access any web-based resources. Accessing
and modifying information in the Office document is made possible by referencing
the office.js file containing the JavaScript API for Office [1]. The add-in logic is
developed in JavaScript:

Office.initialize = function () {
// Office is ready
$(document).ready(function () {

// Implementation of add-in logic
});

};

Once initialized, an add-in can access data in the underlying application. For example,
the code in Fig. 1 recovers the content (the formulas) of the current selected cells in
Excel.

Excel.run(function(ctx) {
var range = ctx.workbook.getSelectedRange();
range.load(’formulas’);
return ctx.sync().then(function() {

var content = range.formulas;
// Process the content

});
});

Fig. 1. Snippet of code to recover the content of a range of cells.

We refer to the official documentation for further detail on the Office add-in plat-
form [3].

2.2 Access Structures

An access structure specifies the set of attributes required to gain access to some secrets.

4

Definition 2.1 (Access structure). Let U be a universe of attributes. An access struc-
ture A is a collection of non-empty subsets of U . An access structure A is called mono-
tone if, for every B ⊆ C ⊆ U , B ∈ A⇒ C ∈ A.

In this paper, we will define access control in terms of policies over attributes with
AND and OR gates (cf. Section 3.6), that are then converted into access structures to be
used by the CP-ABE scheme.

2.3 Ciphertext-policy ABE

Let λ denote the target bit-security of the cryptographic scheme (a.k.a, the security
parameter). A ciphertext-policy ABE scheme CP-ABE = (Setup, Enc, KeyGen, Dec)
is a tuple of probabilistic algorithms together with a message spaceM that behave at
follows:

– Setup takes as input the security parameter λ and outputs a public key pk and a
master secret key msk.

– Enc takes as input the public key pk, a message m and an access structure A, and
outputs a ciphertext c.

– KeyGen takes as input the master secret key msk and a set of attributes S, and
outputs a secret key sk.

– Dec takes as input the public key pk, a ciphertext c and a secret key sk, and outputs
m∗ or ⊥.

A CP-ABE scheme must satisfy the following correctness condition: for all m ∈
M, access structure A, and set of attributes S ∈ A, it holds that

Pr

Dec(pk, c, sk) 6= m

∣∣∣∣∣∣
(pk,msk)← Setup(1λ)
c← Enc(pk,A,m)
sk← KeyGen(msk, S)

 ≤ negl(λ) ,

where a← A(b) denotes the output of the algorithmAwhen run on input b and negl(λ)
denotes a negligible function, i.e., a function which is smaller than the inverse of any
polynomial for large enough values of λ.

In this paper, we only consider fully-secure CP-ABE schemes. We recall here the
intuition, and refer to [9, Sec. 2.3] for a formal definition. A CP-ABE scheme is fully-
secure against chosen plaintext attacks if, at any time after the deployment of the ABE
scheme, no group of colluding users can distinguish between encryption of two mes-
sages of their choice, under an access structure (a.k.a., a policy) of their choice, as long
as no member of the group can decrypt on their own.

2.4 Charm

Charm [10] is (mostly) a Python-based framework for prototyping advanced cryp-
tosystems. It uses a hybrid design: performance intensive mathematical operations are
implemented in native C modules, while cryptosystems themselves are written in Python.

5

In particular, Charm uses the Pairing-Based Cryptography Library [4] for elliptic-curve
generation, operations, and cryptographic pairing implementations.

The scheme we use in our system is FAME, a CP-ABE scheme proposed at the
2017 ACM CCS by Agrawal and Chase [9]. We use without modification the authors’
implementation of FAME (as incorporated into Charm).

3 The Excel Add-in

This section presents our Excel add-in and its workflows.

3.1 Setting

Our add-in assumes the existence of the following entities/services:

– An entity O, who will create CP-ABE parameters

(pk,msk)← Setup(1λ) .

O is the only entity knowing the master secret key msk, hence the only party that
will be able to create secret keys sk’s associated to sets of attributes.

– A web service W , which will be hosting the add-in web application (cf. Sec-
tion 2.1). This service may or may not be controlled by O.

– A serviceE (e.g., a web service accessible through a REST API), which will enable
to encrypt with the CP-ABE scheme. This service may be completely independent
of O and W ; it only implements the Enc operation of the CP-ABE scheme.

– A serviceD (e.g., a web service accessible through a REST API), which will enable
to decrypt with the CP-ABE scheme. This service may be completely independent
of O, W and E; it only implements the Dec operation of the CP-ABE scheme.

– n entities Pi’s that will be issued secret keys by O over time; these will receive a
protected spreadsheet and use the add-in to recover the information they are entitled
to see.

Our add-in enables everyone (i.e., the above entities or anybody else) to create se-
lectively protected spreadsheets. In particular, it will enable to select cells and encrypt
them according to policies. Therefore, our add-in only requires to know which universe
of attributes it should use to allow policy creation.

Additionally, in order to run the Enc and Dec algorithms, the servicesE andD need
to know the public key pk. In our evaluation (Section 4), we assume the public key to
be embedded in the services E and D. An alternative option could be for the add-in to
be configured at load time with the public key and to send this public key along with
the message and policy (resp., with the ciphertext and the secret key) every time it asks
for encryption (resp., decryption).

6

3.2 (Offline) Key Distribution

This key distribution is decoupled from the Excel add-in, and may be performed offline
and out-of-band.

The entity O is the only entity that can issue secret keys sk’s. In the following,
we assume that O issued and shared one or more secret keys skij’s to each party Pi.
Note that a key sk will be used to decrypt several spreadsheets over time (as long as its
attributes can decrypt cell policies).

In the following, we assume the skij’s are stored in (say) JSON files.

3.3 Spreadsheet Creation

As recalled above, anyone using the add-in may activate the privacy protection in an
Excel spreadsheet.

The activation of the add-in follows the following workflow:

1. Display a page to enable the activation of the privacy protection. This page asks to
create an administrative password (Fig. 2).

2. Upon submission of a password pa, apply the scrypt password-based key derivation
function thereon to obtain a key ka (our add-in uses the scrypt-async library [5]).
(This administrative key will encrypt any administrative-related data.)

3. Store a salted hash H(ka;na) of the key ka in the

Office.context.document.settings

object. The hash is computed using the TweetNaCl.js library [6]. This object is
saved in the Excel document, and will be accessible via any Excel application.

4. In order to enable cell encryption, a configuration file containing the list of all
attributes needs to be loaded in the add-in. An example of such file is provided
in Figure 3.

5. Store the list of attributes encrypted under ka in the settings.

At the end of the spreadsheet creation, the settings contain a hash (na, H(ka;na))
of the administrative key ka, and the list of attributes encrypted under ka.

3.4 Encryption

In this subsection, assume a user U wants to add cell encryption in a xlsx document
created as in Section 3.3. Figure 4 shows a screenshot of the add-in after encryption of
three ranges of cells with two policies.

Authentication In the current version of the add-in, we only enable cell encryption
when U knows the administrative password. This is not necessary and one may choose
to remove this authentication step. Note that from Section 3.3, only the attributes are
stored in the settings; future work may include additional (encrypted) content in the
settings, which explains why we implemented this more general approach.

The workflow at load time is as follows:

7

C
om

pu
te

k
a

(s
cr

yp
to

fp
as

sw
or

d)
.

Sa
ve

sa
lte

d
ha

sh
of

k
a

in
se

tt
in

gs
.

Fig. 2. Workflow to create a privacy-protected Excel spreadsheet. (The screenshots are
anonymized for submission.)

{
"Continent": ["Africa", "Antarctica", "Asia", "Australia", "Europe",

"North America", "South America"],
"Country": ["Canada", "China", "France", "Japan", "Russia", "UK"],
"Trust level": [1,2,3,4,5],
"Organization": ["BRICS", "G20", "G7", "NATO", "WTO"],

}

Fig. 3. An example of configuration file containing the list of all attributes.

1. Check the presence of a hash (na, H(ka;na)) in the settings. If defined, display a
login screen.

2. Upon submission of a password pu by U , apply the scrypt password-based key
derivation function thereon to obtain a key ku (our add-in uses the scrypt-async
library). If H(ku;na) = H(ka;na), decrypt the attributes from the settings (if
any) and populate the UI accordingly; if not, go back to Step 1.

Upon success of Step 2, U will be considered “authenticated”.

Encryption Assume U wants to encrypt a range of cells (say A1:B4) under a policy
of her choice. U will select the cells in the range (A1:B4) in Excel, will use the policy
UI to create a policy (cf. Fig. 5), and will click on the “Encrypt” button.

Upon click, the encryption workflow is as follows:

8

Fig. 4. Screenshot of add-in after encrypting three ranges of cells: A4:C10 and A100:C128 are
encrypted with a policy (continent == Asia) (named “Asian countries” by the user), and
E4:I10 is encrypted with a policy (trust > 5) OR (population >= 60000000)
(named “Trusted countries” by the user). Column J computes the sum of the values in the columns
E to I for each row; note that it outputs #N/A when the cells are encrypted. The chart display the
cells in the range A4:C12; note that only unencrypted values are visible in the chart.

1. Get the content of the selected range (see Fig. 1 for an excerpt of our JavaScript
code); without loss of generality, we assume the content is a n × m matrix of
strings C;4

2. Generate a random key kc (using TweetNaCl.js);
3. Encrypt every string C[i][j] with the secret key kc and obtain E[i][j] (using

the TweetNaCl.js symmetric encryption scheme);
4. Recover the policy as a string P from the UI;
5. Use the service E to encrypt kc under P and obtain a ciphertext c;
6. Store (c, {E[i][j]}i,j) in a custom XML part object in the document using the

JavaScript API for Office.
7. Clear the content of the cells; e.g., our add-in replaces each of the C[i][j] by

#N/A. We made this choice because each formula including an encrypted cell will
then automatically display #N/A (cf. Fig. 4).

Note that our add-in uses hybrid encryption (i.e., data encapsulation using symmet-
ric encryption and a public key encryption of the symmetric key), that is instead of

4 Note that in our add-in, we load the formulas of the cells, and not the displayed text values
(Fig. 1). This enables to recover cell inputs, such as "=SUM(A1:A10)", that compute over
cell ranges, and hence to keep the dynamicity of the spreadsheet.

9

Fig. 5. Pop-up that enables creation of conjunctive normal forms policies, that is policies
of the form (expr11 OR ... OR expr1i) AND (expr21 OR ... OR expr2j)
AND (expr31 OR ... OR expr3k).

encrypting each C[i][j] using the CP-ABE encryption scheme, it generates a sym-
metric key kc, encrypt all the cells under kc using a symmetric encryption scheme,
and encrypts kc under the CP-ABE scheme (with the public parameters). The reason
is threefold: (1) encrypting/decrypting under a symmetric encryption scheme is much
faster than encrypting/decrypting with the ABE scheme; (2) this enables to perform cell
encryption locally rather than sending the cell content to the external service E; and (3)
when encrypting with the ABE scheme, the ciphertext is significantly larger than the
message (by several order of magnitudes), whereas it remains of roughly the same size
when using the symmetric encryption scheme. As such, as soon as we encrypt two cells
with the hybrid method, we are more efficient in time and space than encrypting both
cells with the ABE scheme. We provide concrete numbers in Table 2.

As a side remark, note that most implementations using public-key cryptography to-
day use a hybrid system. Examples include the TLS protocol, which uses a public-key
mechanism for key exchange (such as Diffie–Hellman) and a symmetric-key mecha-
nism for data encapsulation (such as AES), OpenPGP and PKCS #7 (see discussion
about alternative approaches for achiving a subset of the functionality but would be
viable in the short-term in section 5).

3.5 Decryption

In this subsection, assume a user Pu, who has been issued one or more secret keys
skuv’s for attribute sets Suv’s by O, gets access to a spreadsheet with several encrypted
cells as in Section 3.4. At load time, the add-in checks the presence of encrypted cells;
if present, it displays a screen to drag and drop secret keys.

Upon drag of a key file corresponding to a CP-ABE secret key sk ∈ {skuv}v , the
decryption workflow is as follows:

10

1. For every group of encrypted cells as generated by Section 3.4, recover (c`, {E`[i][j]}i,j)
from the custom XML part object.

2. For every c`, use the service D to decrypt c` with sk, and obtain m` or ⊥.
3. When it decrypts correctly, define kc = m` and decrypt the cells E`[i][j] to

recover C`[i][j].
4. Replace the content of the cell range by C`[i][j].

The CP-ABE scheme ensures that, if the attributes embedded in sk do not satisfy the
policy associated to the ciphertext c`, Pi cannot recover the corresponding symmetric
key. The symmetric encryption scheme ensures that the content of the cells remains
secret to anyone that would not know the symmetric key. An important benefit of the
hybrid approach is that the service D never gets to know the content of the cells either;
instead decryption is done locally within the application itself.

Finally, note that the ABE scheme is secure against collusions. For example, assume
a cell is encrypted under the policy

(continent == Asia) AND (continent == Europe).

Even if participantP1 (resp.P2) has the attribute continent == Asia (resp. continent
== Europe), P1 and P2 together cannot combine their key to decrypt the ciphertext
associated to the cell encryption, and therefore do not learn the cleartext content the
cell.5

3.6 Expressiveness of Policies

To increase usability of our add-in, we developed a policy creation UI (Fig. 5) that
allows a user to easily create policies, eventually expressible as Boolean expressions6

with operators AND and OR of predicates of the form

name == value

for string values, and
name == value
name >= value
name > value
name <= value
name < value

(1)

for numerical values.
For example, this allows the creation of policies of the form:

((continent == Europe) OR (trust >= 3)) AND (org == NATO)
AND (key valid until > 1518523199),

to share data with a trusted country or a European country, part of the NATO organi-
zation, with a valid key. Indeed, the last predicate of the above policy allows for key
revocation by including a numerical attribute key value until in the keys, as pro-
posed in [13, Sec. 4.3].

5 Note that this policy makes sense; e.g., Russia or Turkey could be potential intended recipients
of such a policy.

6 More precisely, it allows the creation of conjunctive normal forms (CNF).

11

Attributes in the Keys Recall that at key generation time, CP-ABE schemes take as
input a set of attributes S. In our add-in, attributes in the keys are specified by name/-
value:

name = value.

When value is a string, we add to the set S the string "name:value". When value
is a k-bit number, we use a simple trick (already mentioned in [13, Sec. 4.3]) that
decomposes the number into its bits, adding the k (string) attributes to the set S:

"name:vk−1**· · ·***"
...

"name:***· · ·*v1*"
"name:***· · ·**v0"

where value =
∑k
i=0 vi · 2i, vi ∈ {0, 1}.

Policies in Ciphertexts Recall that at encryption time, CP-ABE schemes take as in-
put access structures rather than a policy string; we therefore use the Charm policy
parser [10] to convert our policies. Unfortunately, while the current policy parser of
Charm explicitly parses7 the predicates for numerical values of Eq. (1), any such pred-
icate is replaced by the string name and disregards the value altogether (see the culprit
function8 on Fig. 6).

convert ’attr < value’ to a binary tree based on ’or’ and ’and’
def parseNumConditional(s, loc, toks):

print("print: %s" % toks)
return BinNode(toks[0])

Fig. 6. Extract from the charm/charm/toolbox/policytree.py file in Charm that does
not handle correctly numerical predicates. toks is a list containing three strings: the name, the
operator, and the value.

In our add-in, we modified the Charm policy parser to handle the predicates of
Eq. (1). Using again the bit decomposition of value =

∑k
i=0 vi · 2i, vi ∈ {0, 1}, we

use a simple tree implementing the operator (see Fig. 7 or [13, Fig. 1]) using the AND
and OR operators.

7 https://github.com/JHUISI/charm/blob/dev/charm/toolbox/
policytree.py#L52

8 https://github.com/JHUISI/charm/blob/dev/charm/toolbox/
policytree.py#L20

12

AND

"name:1***" OR

"name:*1**" AND

"name:**1*""name:***1"

Fig. 7. Tree implementing the attribute name >= 11. The Boolean expression derived from the
tree evaluates to true when the key contains either (a) "name:1***" and "name:*1**"; or
(b) "name:1***", "name:**1*" and "name:***1"; case (a) captures name ≥ 12 and
case (b) captures name ∈ {11, 15}.

Number of Bits An important shortcoming of the approach described in Section 3.6 is
that one has to be careful with the expected length of the numerical values. Indeed, as-
sume that name = 16; the transformation of Section 3.6 yields that the key attributes
set contains

name:1****
name:*0***
name:**0**
name:***0*
name:****0

The key would therefore not decrypt a ciphertext encrypted under the policy of Fig. 7
(while it should).

In our implementation, we enable specifying the number of bits of numerical at-
tributes, defaulting to 32-bit numbers for usability. An important caveat of defaulting to
32 bits is each tree policies may contain up to 32 attributes, which impacts the perfor-
mance of the online encryption with the CP-ABE scheme (see Table 1).

4 Evaluation and Performances

Choice of CP-ABE. As mentioned in the introduction, efficient and unbounded CP-
ABE schemes based on well-established security assumptions have been proposed re-
cently. In our add-in, we use the FAME CP-ABE scheme over the MNT224 curve intro-
duced at CCS’2017 by Agrawal and Chase [9]. As far as we know, FAME is the most
efficient CP-ABE scheme today (at the time of developing the add-ins and writing of
this paper) for the encryption and decryption operations [9, Sec. 5].
Docker-Compose. Our test environment runs three Docker containers: a nginx:latest
container that serves the add-in web page (the web service W), a python:latest
container accessible through a REST API to access the services E and D, and finally
a nginx:latest proxy container that listens on port 443 and redirects either to the
add-in or to the backend. The Python container uses the FAME implementation of the
Charm framework [10] for CP-ABE encryption and decryption.

13

Number of bits of the numerical val-
ues of the attributes

4 8 12 16 20 24 28 32

KeyGen (attributes: a = k) 31ms 54ms 77ms 100ms 123ms 146ms 168ms 191ms

Enc (policy: a == k) 27ms 50ms 74ms 97ms 121ms 144ms 168ms 191ms
Dec 26ms 26ms 26ms 27ms 27ms 27ms 27ms 27ms

Enc (policy: a <= n) 28ms 51ms 75ms 98ms 119ms 142ms 165ms 186ms
Dec 26ms 26ms 26ms 26ms 26ms 26ms 26ms 26ms

Enc (policy: a < m) 23ms 45ms 70ms 82ms 99ms 134ms 160ms 184ms
Dec 26ms 26ms 26ms 26ms 26ms 26ms 26ms 26ms
Table 1. Average performances of the KeyGen, Enc, and Dec operations where the ciphertext is
associated to a policy a == k (resp., a <= n, resp. a < m) and the key is associated to an
attribute a = k, for N -bit integers k, n,m and k ≤ n and k < m. The CP-ABE scheme is
FAME instantiated in the Charm framework on a Intel Pentium CPU G4400 at 3.30GHz.

Environment. The host is a MacBook Air (Late 2014) running macOS High Sierra
10.13.3 with a 1.7 GHz Intel Core i7. The version of the Docker engine is 17.12.0-ce
and the version of Excel is 16.9 (180116).

Easy-to-use. Our add-in is very easy to use; it only requires a user to install the add-in
(e.g., via the integrated add-in store) and to specify the attributes that will be used to
construct the encryption policies (e.g., using a configuration file). In particular, it does
not modify Excel in any way and does not require additional software to be installed on
the machine.

4.1 Encryption

Setting. We start from 5 xlsx documents, containing respectively 1, 10, 100, 1 000,
and 10 000 cells with value #N/A. We report the time to encrypt those cells against four
policies (see below), and the size of the resulting documents. Note that our baseline
documents contains #N/A as text because, in Step 7 of our encryption workflow, we
clear the cells by replacing their content by #N/A: keeping the same content displayed
in the cells enables us to measure as accurately as possible the size overhead due to the
encryption.9

Policies. We measure the performances of our encryption workflow with four policies.

P-I: (name == value);
The first policy is a simple policy that checks the presence of one attribute name
= value, where value is a string, in the secret key. This is the simplest policy
that can be defined.

9 Obviously, the longer the text in the cells, the larger the documents will be. We use the default
secret-key authenticated encryption of TweetNaCl.js (XSalsa20-Poly1305); hence the size of
each ciphertext is 16 bytes longer than the original message.

14

of cells 1 10 100 1 , 000 10 , 000

Encryption with policy P-I 150ms 150ms 163ms 181ms 580ms
Encryption with policy P-II 397ms 407ms 416ms 421ms 837ms
Encryption with policy P-III 386ms 394ms 410ms 418ms 848ms
Encryption with policy P-IV 1 , 410ms 1 , 417ms 1 , 423ms 1 , 434ms 1 , 614ms
Table 2. Benchmark of the encryption workflow (Section 3.4) according to different policies, on
1 to 10 , 000 cells.

P-II: (name == n) where n is a 32-bit number;
The second policy is a policy that checks that the key has been created for (name
= n). Recall from Section 3.6 that the key will contain 32 attributes of the form
name:***b*** where b ∈ {0, 1} and a varying number of *. The policy checks
equality, i.e., checks that the key contains all the aforementioned attributes.

P-III: ((name1 == value1) OR (name2 == value2)) AND
(name3 > n) where n is a 32-bit number;
The third policy has the form of a policy created by our UI (Fig. 5). To enable
decryption, a key needs to contain at least 33 attributes (the 32 attributes for the
numeral values, and at least one attribute of name1 == value1 or name2 ==
value2). Recall from Section 3.6 that the policy is a tree with up to 33 leafs.

P-IV: ((name1 == n1) OR (name2 == n2) OR (name3 == n3) OR (name4
== n4))

AND (name5 > n5), where ni, i ∈ {1, . . . , 5} are 32-bit numbers;
The fourth policy is a “bad” policy, in the sense that it yields a Boolean formula
with up to 5 × 32 = 160 predicates. As we will see, this yields a large ciphertext
and impacts the encryption time.

Timings. Table 2 reports benchmarks for the encryption workflow (Section 3.4), that is
the time it takes from the moment a user clicks ‘Encrypt’ and the moment the content
of the cells is cleared (Step 7).

These timings illustrate the interest of hybrid encryption (Section 3.4): encrypting 1
or 1 000 cells takes approximately the same time. These timings also show that such an
add-in is usable: encrypting 10 , 000 cells with a complex policy (i.e., that involves a lot
of attributes) takes about 1.5s when using Python in a Docker container on a standard
laptop. Significant gains are to be expected by running an efficient implementation of
the CP-ABE scheme natively on a server.

Size. Figure 8 reports the sizes of the xlsx documents after encrypting 1 to 10 000
cells according to the above policies. (Note that the x axis is logarithmic.)

This figure shows that, as expected from the workflow of Section 3.4, there is a
one-time size increase corresponding to the encryption of the key under the CP-ABE
scheme (difference at the leftmost of the plot between the baseline size and the sizes
after encrypting one cell), and then a small overhead corresponding to the encryption
of the cells. This overhead grows linearly with the number of cells encrypted. It follows

15

100 101 102 103 104

20

40

60

80

100

Number of cells

kB

Baseline P-I P-II P-III P-IV

Fig. 8. Plot of the size of the xlsx documents after encrypting 1 to 10 , 000 cells according to
policies P-I to P-IV.

that encrypting 10 , 000 cells according to the complex policy P-IV only increases the
document size by about 60kB.

4.2 Decryption

As shown on Table 1, regardless of the policy, the decryption time is very efficient.
Indeed, decrypting requires to compute 6 cryptographic pairings (bilinear maps) over
elliptic curves, 6 multiplications in the target group, and 6I + 3 multiplications in the
input group, where I is the number of attributes used in decryption. Since multiplying
in the input group is three order of magnitude faster than computing a pairing (cf. [9, Ta-
ble 5.1]), the decryption time is nearly independent of the number of attributes involved.
Therefore, the execution time of the decryption workflow (Section 3.5) amounts to the
asynchronous execution of the JavaScript in the browser within the Excel software (plus
network communication). In Table 3 we report average time (over 10 runs) to decrypt
100 to 1 , 000 cells, encrypted as 10 sets of 100 cells according to random policies of
the form P-I, P-II, P-III, and P-IV. These timings show that our (unoptimized) imple-
mentation already achieves good performance.

5 Short-term Adoption: Policy-based Encryption without
Collusion-Resistance via Multi-Receiver Hybrid Encryption

The deployment of ABE in production systems, e.g., in government and commercial ap-
plications, remains limited. Currently, to the best of our knowledge, no widely-deployed

16

Number of cells that can be decrypted Average time

1 · 100 1 , 082ms
3 · 100 1 , 295ms
6 · 100 1 , 668ms
10 · 100 1 , 851ms
Table 3. Benchmark of the decryption workflow (Section 3.5) on 10 sets of 100 encrypted cells
according to a random policy of the form P-I, P-II, P-III, and P-IV.

commercial authoring software platforms and products use ABE, especially in defense
settings and regulated industries. The root cause of this (in the USA) may be because
ABE has not been standardized yet by well known standardization bodies that develop,
endorse, and maintain such national and international standards, e.g., the National Insti-
tute for Standards and Technology (NIST). While ABE has not (yet) been standardized
in the USA, there are recent efforts in that direction by the European Telecommunica-
tions Standards Institute (ETSI)10.

Developing new cryptographic standards is a process that takes several years (as
it should) due to its complexity and importance as illustrated by the ongoing11 NIST
effort to standardize post-quantum cryptography (PQC). We recognize that standardiz-
ing PQC is a larger effort compared to standardizing ABE, and thus we expect PQC
to remain the focus of NIST’s standardization efforts for the next two to three years.
While things may change due to unexpected reasons, we do not see any long-term ABE
standard being initiated, completed, and ratified/finalized in the next three to five years,
especially if one considers a timeline similar to standardizing PQC.

A natural question then becomes “is there a way to only utilize standardized public-
key/asymmetric and symmetric schemes and be able to emulate most of the functionality
and guarantees provided by ABE in some practical settings?”. We sketch here a po-
tential approach that we argue works in many enterprise settings. The purpose of this
section is to argue that other short-term secure selective sharing solutions may be de-
signed and deployed, building upon the in-app cryptographically-enforced framework
developed in this paper, until ABE is standardized and ready for commercial wide-
scale adoption. Specifically, we focus on settings where one does not require a built-in
technical solution for collusion-resistance from users and insiders in the enterprise. For
example, if the policy is encrypting to multiple parties, where each party by itself should
be able to decrypt (i.e., an OR clause), then there is no potential (nor reason) for col-
lusion between parties. There are a lot of settings and application where an encrypted
object should be restricted to a group of employees in the enterprise, and each of them
alone can, and should be able to, decrypt.

10 https://www.etsi.org/newsroom/press-releases/1328-2018-08-
press-etsi-releases-cryptographic-standards-for-secure-
access-control

11 https://csrc.nist.gov/Projects/post-quantum-cryptography/
workshops-and-timeline

17

Representing Encryption Policies in Disjunctive Normal Form (DNF). While in
the ABE case, policies were expressed in Conjunctive Normal Form (CNF) form (see
Section 3.6), one can easily convert a policy into a DNF form. Whether CNF of DNF
representations is preferable will depend on the application. Some functions can be
succinctly represented in DNF whereas others are represented more succinctly in CNF;
switching between these representations can involve an exponential increase in size
[22]. We outline below techniques to use (standardized) public-key encryption schemes
in a blackbox manner to realize AND and OR clauses. It will be up to the application to
decide how to combine these into encryptions that represent DNF or CNF. It is impor-
tant to stress that this public-key encryption is only used to wrap a random short sym-
metric key (e.g., an AES key) as commonly used in hybrid encryption which denotes
the combination of a data encapsulation mechanism (DEM) and a key encapsulation
mechanism (KEM).

Encrypting to OR Clauses. The approach to encrypt an OR clause is to encrypt the
symmetric key k used to encrypt the data object (m) with different public-keys, where
each public-key corresponds to an attribute in the clause. For example, if the clause
is a1 OR a2 OR a3, where ai corresponds to pki, then an encryption of data m and
symmetric key k for such a clause would be {Ea1pk1(k)||E

a2
pk2

(k)||Ea3pk3(k)||E
s
k(m)},

where || denotes concatenation and Eaipki(.) denotes public-key/asymmetric encryption
with key pki for attribute ai, and Esk(.) denotes symmetric key encryption with key s.

Encrypting to AND Clauses. There are two approaches to encrypt an AND clause.
The first approach uses nested re-encryption, it performs sequential re-encryption

of the symmetric key k and ciphertexts resulting from encrypting it under the differ-
ent public-keys corresponding attributes in the AND clause. For example, if the AND
clause is a1 AND a2 AND a3, where ai corresponds to pki, then encryption of data m
with symmetric key k for such a clause would be {Ea3pk3(E

a2
pk2

(Ea1pk1(k)))||E
s
k(m)}.

The second approach is to use additive (or another forms if t-out-of-n decryption
is required) secret sharing of the symmetric key k to be encrypted, and then encrypt
each share under different public keys. For example, if the AND clause is a1 AND a2
AND a3, where ai corresponds to pki, then encryption of data m with symmetric key
k for such a clause would be {Eapk1([k]1)||E

a
pk2

([k]2)||Eapk3([k]3)||E
s
k(m)}, where [k]i

is (additive) share i of the key k.
The time vs space trade-off offered by the two approaches above is as follows: the

first approach requires less space to store the encryption but both encryption and decryp-
tion cannot be parallelized, while in the second approach encryption and decryption can
be parallelized, but would require more space.

Security. Given that the actual data is encrypted using a standard authenticated sym-
metric encryption scheme with a random key k (e.g., the AES-GCM authenticated en-
cryption mode), the confidentiality of the data is ensured when k remains confidential.
We argue below security of the multi-receiver key encapsulation mechanism (KEM) de-
scribed above and which can be used to encrypt k for both an AND and an OR clauses.

Security of an AND clause: The key k can be secret shared into l shares depend-
ing on the number of l literals/attributes in the AND clause. Due to the properties of
secret sharing, each share of k ([k]i) by itself will be a random string. Each [k]i will
then be encrypted independently via the (asymmetric) public-key encryption scheme

18

(Eaipki(.)) and a different public-key pki. It is easy to argue by contradiction that, if such
a construction is insecure, then a single application of the underlyingEaipki(.) is insecure
because one could always concatenate a single such encryption with other encryptions
of random messages for random public-keys and pass them to an adversary that breaks
such a concatenation produced from an AND clause, thus resulting in a break of the
underlying encryption scheme.

Security of an OR clause: We note that the encryption of an OR clause is essentially
a multi-receiver KEM encrypting a random symmetric key used in a data encapsula-
tion mechanism (DEM) approach. This is the approach utilized in encrypting email in
well used protocols such as S/MIME12. A formal security treatment of this approach
is outside the scope of this paper, but we report here informally the essence of why
this approach is secure. If one can break the multi-receiver use of an appropriately
chosen CCA-secure public-key encryption used as a KEM mechanism (with different
public-keys), then one can devise a reduction from the multi-receiver KEM used above
to a single receiver KEM and thus break the security of the underlying. The reduction
would generate several ciphertexts of 0 and 1 and pair them with the two given chal-
lenge encryptions, and pass them to the multi-receiver KEM adversary to break the ones
it could and then use this break to distinguish the two challenge encryptions.

Performance Overhead. We give below a high-level estimate of the encryption/de-
cryption delay and computational overhead involved therein. We also assess the space
overhead in the proposed approach.

Computational Overhead and Delay from Decryption: Assuming policies in DNF
form with less than 10 OR clauses, each containing less than 10 attributes combined via
an AND clause, one would have to do at most 100 public-key encryptions. As a rule
of thumb, a typical public-key encryption is on the order of (or less than) several msec
so such encryptions and decryptions will require less than a second. We note that while
opening a large MS Office document is fast, it still is a bit perceptible to the user, i.e.,
not instant and may take a fraction of a second or even a full second. We argue that
extending this by several hundred msec will be almost imperceptible to users. Finally,
note that the encryptions and decryptions corresponding to the OR clauses are indepen-
dent and can be easily performed in parallel. Encryptions and decrytions corresponding
to AND clauses can also be parallelized if the secret sharing based technique described
above is utilized.

Increase in File Size: The space overhead due to the encryption of the actual data ob-
ject is minimal as it is encrypted only once using a symmetric encryption scheme (e.g.,
AES) and a randomly generated key. The random symmetric key is then encrypted via
a public-key/asymmetric encryption several times to satisfy a policy that will contain at
least two OR clauses, one for the originator of the encryption and one for the recipient
of that encrypted data field. We note though that it is likely that in enterprise settings,
an additional OR clause may be added to the policy so that central IT (or similar organi-
zations) can recover encrypted content belonging to the enterprise if employees thereof
leave. This clause may be such that the symmetric key is secret shared and each share

12 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-49.pdf

19

Security Domains Confidencial’s architecture and deployment options allow for the
data transmitted between security domains to be tailored to suit
your enterprise’s needs, balancing security and convenience

Fig. 9. Different security and trust domains involved in an enterprise-based deployment of a larger
system to operate the add-ins and integrate them with existing enterprise infrastructure. See Fig-
ure 10 for an illustration of what building blocks from the system are deployed in each domain
for the hybrid deployment scenario.

is encrypted with a different key belonging to different entities in the enterprise’ IT or
security departments.

Limitations: One obvious limitation of the approach outlined above is that it only
works for small policies, e.g., with a small number of clauses each with a few attributes.
This approach also provides no collision resistance for AND clauses. We argue that if
each policy only has one AND clause corresponding to the recovery term described
above, then it may be acceptable because if individuals high up, and with significant
privilege, are acting malicious, they could override policies and/or recover sensitive
data through other means. The approach exhibits a linear overhead in the encryption
size in the number of OR clauses and will require multiple public-key operations for
encryption and decryption; such computationally expensive operations can be easily
parallelized when both encrypting and decrypting.

6 Deployment and Integration with Enterprise Infrastructure

We first overview the different security domains and building blocks that will be in-
volved in a typical enterprise deployment. We then discuss three different deploy-
ment options, cloud-based deployment, hybrid cloud-assisted deployment, and local
on-premise deployment.

6.1 Building Blocks for Enterprise Deployments

A larger enterprise system supporting the deployment and operation of the add-ins re-
quires the following building blocks.

20

i- Server Serving the Add-ins: A production deployment of the add-ins requires one to
upload them to the Microsoft Office store (Microsoft App Source13). What is uploaded
to the store is the manifest which instructs Office editors (e.g., Excel) to fetch the actual
JavaScript to be executed from a server identified in such a manifest. One could also
load such an add-in manifest manually from the Office administrator portal. In either
case, there is a sever that hosts the actual JavaScript implementation of the add-in and
that needs to be deployed somewhere. Depending on the desired deployment scenario
(discussed below), this could either be in the cloud or locally on-premises in an enter-
prise’s infrastructure.

ii- Identity and Access Control Management (IAM) System: Any small, medium, or
large enterprise must have an IAM system. These typically come in the form of LDAP-
based implementations such as Microsoft Active Directory (AD) or its recent cloud
version, Azure AD. Also, most modern IAM systems, often called Identity Providers
(IDPs) these days support the Security Assertion Markup Language (SAML) or OpenID
standards to enable interoperability. Any enterprise deployment of the larger system op-
erating the add-ins has thus to integrate with the enterprise’s IAM and IDP systems so
that users can easily use the add-ins with their existing enterprise credentials. For added
security, MFA and/or another set of credentials specific for using the add-ins would be
ideal, but such additional protections would make the system less user-friendly.

iii- Private Keys Repository: While it is possible to store the private keys locally on
a user’s device, most enterprises may prefer hosting such private keys in servers they
control. And on-premise key server can be used, where the entire keys are stored. An-
other option is to use a key share server with keys split between the enterprise and a
cloud-based operator (we see this as a more secure option).

iv- Events and Activity Logging Server: Because the add-ins enable implementing a
form of cryptographic access control for data inside documents, logging decryption
events that the add-ins perform (whether they succeed or fail) can provide visibil-
ity about usage of sensitive data. Such level of intra-document visibility is currently
unattainable when file encryption or folder/file access control tools are used. We ar-
gue that such events can be useful to the enterprise security and IT teams, especially
for forensics, insider threat detection, and for compliance purposes. Such events should
likely be exported to enterprise Security information and event management (SIEM)
systems14. SIEM systems collect and converges data from different components of an
IT infrastructure to be monitored by operational security teams; this topic is beyond the
scope of this paper and is left for future work.

6.2 Deployment Options: Cloud-based vs Hybrid vs Local On-premise

Given the above building blocks for the larger enterprise system required to operate
such add-ins, there are three different options for deploying and integrating such a sys-

13 https://appsource.microsoft.com/en-us/
14 https://www.sumologic.com/insight/siem/

21

tem with an enterprise’s infrastructure. We discuss each of these options below.

i- Cloud-based Deployment: In this case, the entire backend supporting the add-ins is
hosted in the cloud by a service provider, i.e., a cloud-based version of the follow-
ing is used, server serving the JavaScript code for the add-ins, the database with user
credentials used for identification and authentication, the public-key registry, and the
private-keys. This is the cheapest, simplest, and quickest option for a deployment and
operation, but may be less desired when enterprises prefer to retain control of their
cryptographic keys and event logs.

ii- Hybrid Cloud-assisted Deployment: In this case (illustrated in Figure 10), parts of
the backend supporting the add-ins is hosted in the cloud by a service provider (labeled
the “add-ins cloud operator”) and parts is hosted locally on-premises and operated by
the deployment target enterprise itself. The most likely components to be deployed lo-
cally are the integration with a cloud-based IAM systems, the private-key server (or at
least a share of such private-keys if a higher level of security is desired), and the events,
logs, and analytics servers; the rest can be deployed in the cloud.

iii- Local On-premise Deployment: In this case, the entire backend supporting the add-
ins is hosted locally on-premises and operated by the deploying enterprise itself, i.e., a
locally-hosted version of the following is used, server serving the JavaScript code for
the add-ins, the database with user credentials used for identification and authentication,
the public-key registry, and the private-keys. This is the most expensive, most involved,
and slowest option for a deployment and operation, but may be desired when enterprises
prefer to retain control of their cryptographic keys and event logs, and if they want to
connect to their local IAM system.

7 Extensions to Other Platforms

While we focus in this paper on the Microsoft Office platform, a similar approach can
be implemented for other platforms. This applies especially to platforms that have a
well established framework for extensions and add-ins such as web browsers, Google
Workplace (i.e., Google Docs, Google Spreadsheet, and Gmail), Zoom, and Slack. We
discuss the challenges facing the design and implementation of add-ins and extensions
for such platforms below.

i- Platforms allowing client-side execution: Popular web browser frameworks for ex-
tensions , i.e., Chrome, Firexfox, and Edge, allow client-side execution of code, e.g., via
JavaScript. The architecture of web browser extensions will be very similar to the ones
for Microsoft Office as described in this paper. Such web browser extensions would
enable one to select text from a web-page and encrypt it to a specific receiver, then post
it again on a form on the same website; it can also enable one to encrypt portions of a
publicly posted message, or leave an encrypted comment on a post on a public forum.
We have confirmed possibility of realizing such extensions by attempting a preliminary

22

Deployment Option: Hybrid (example)

secure secure secure secure

 Protected Documents

Public Key
Registry

Event Logs

secure secure secure secure

 Shared, Protected Documents

Enterprise exchanges
documents directly with

collaborators

Enterprise syncs
IDs, users

authenticate, with
3rd party Identity

Provider

App & add-ins
pull latest code
from app server

Add-ins installed via MS Office Store

Users query
registry for
public keys

Private Key Server

Flexible Deployment Approach
- Confidencial clients are free to customize their deployment to meet their
security requirements
- In the “Hybrid” deployment model, clients choose whether each component is
hosted in the cloud or on prem

Fig. 10. Illustration of the hybrid cloud-assisted deployment option where the entire private keys
of the users are stored locally in the enterprise. Note that these private keys could be secret shared
between the enterprise and the add-ins cloud provider, or identity provider, for added security.

implementation for Chrome, Firexfox, and Edge; so far, we do not see any roadblocks
to completing such extensions. Completing such web browser extensions, and measur-
ing their performance, is left as future work.

ii- Platforms with no client-side execution: The design and implementation approach
one has to follow for platforms that do not allow client-side execution of code is differ-
ent. Contrary to the JavaScript API for Microsoft Office, for example, the Google add-
ins framework only allows execution of server-side code, which is a significant technical
hurdle if data being encrypted (and keys) cannot (and should not) be exposed to cloud
providers. Currently, we see two approaches to deal with this: (1) a user-friendly in-
platform only approach with client-side app that only ephemerally reveals the data at
encryption, or (2) an out-of-platform encryption/decryption that is not as user-friendly.

a- In-platform only approach: Unfortunately, the options here are limited. The client-
side of the extension can only send the data to be encrypted, it cannot perform any
computation on it, so any computations (i.e., encryption or decryption) have to be per-
formed under the server-side part of the platforms framework.This means that the data
itself is sent to the server-side, and the random DEM key will be generated server-side,
so technically it is also ephemerally exposed to the platform. Similarly, when decryp-
tion is performed, the long-term private key would have to be sent to the platform.
Unfortunately, with no client-side execution capability this is the only option available
for decryption if one has to stay within the platform.

23

b- Out-of-platform encryption/decryption: Here, one would have to also involve an
encryption/decryption service that sits on a trusted user devices, e.g., a desktop-app on
mobile-app. When the add-in is invoked to encrypt it would redirect the user to the
local desktop or mobile app for the user to insert the clear text to be encrypted, then the
ciphertext is send back to the add-in to send it to the server-side part of the extension
and continue the workflow as usual. When decrypting, the ciphertext is forwarded to
the decryption service on the trusted user devices where it is decrypted and displayed.
We have verified via a very basic prototype that this is possible to implement, but it
does present a challenge in terms of usability and the preliminary user feedback prefer
an in-platform only approach if it could be made end-to-end secure. We leave a deeper
analysis and investigation of this topic to future work.

8 Conclusion and Future Work

This paper investigates and addresses a major usability hurdle, the lack of selective
fine-grained access control in widely deployed enterprise products. We focus on the
Microsoft Office platform which constitutes the de facto authoring and collaboration
tool for most entities in the commercial and government settings. Documents authored
and viewed via Microsoft Office are often used to share information in government,
commercial, and private settings. We present a user friendly way to achieve selective
fine-grained protection of information in Excel by developing an Excel add-in, using
the JavaScript API for Office. Our add-in brings the benefits of attribute-based encryp-
tion (ABE) within spreadsheets. Using hybrid encryption, we show that it is possible to
encrypt the cells’ content locally, and minimize the size of the overhead due to encryp-
tion. Our add-in interacts with the state-of-the-art CP-ABE encryption scheme FAME
and offers good performance and usability in our test environment. We envision this
paper as a first step to bring ABE to widely used enterprise software products. An im-
mediate next step will be to extend the current functionality to other products of the
Office suite, such as PowerPoint. While we have developed similar add-ins and exten-
sions to Word and Outlook, the current API for PowerPoint seems more limited. This
paper motivates extensions to the JavaScript API to enable fine-grained modifications
in all Office applications.

9 Acknowledgments

The authors thank Tim Ellis, Karen Myers, Ron Moore, and Dana Wheeler for helpful
discussions and suggestions. This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems
Center, Pacific (SSC Pacific) under Contract No. N66001-15-C-4071. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of DARPA or SSC Pacific. This
research was developed with funding from the Defense Advanced Research Projects
Agency (DARPA). The views, opinions and/or findings expressed are those of the au-
thor and should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

24

References

1. Javascript API for Office. https://dev.office.com/reference/add-ins/
javascript-api-for-office.

2. National Defense Authorization Act for the fiscal year 2000. https://www.congress.
gov/106/plaws/publ65/PLAW-106publ65.pdf.

3. Office add-ins platform overview. https://docs.microsoft.com/en-us/
office/dev/add-ins/overview/office-add-ins.

4. PBC library. https://crypto.stanford.edu/pbc/.
5. scrypt-async. https://github.com/dchest/scrypt-async-js.
6. TweetNaCl.js. https://tweetnacl.js.org/.
7. Using Excel services to share pieces and parts of Excel workbooks. https:

//support.office.com/en-us/article/using-excel-services-
to-share-pieces-and-parts-of-excel-workbooks-c9630a25-4c0a-
43aa-8a93-510adb17b550.

8. Zeutro LLC. http://www.zeutro.com.
9. S. Agrawal and M. Chase. FAME: Fast attribute-based message encryption. In B. M. Thu-

raisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017, pages 665–682. ACM
Press, Oct. / Nov. 2017.

10. J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green, and A. D. Ru-
bin. Charm: a framework for rapidly prototyping cryptosystems. Journal of Cryptographic
Engineering, 3(2):111–128, 2013. https://github.com/JHUISI/charm.

11. N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully se-
cure functional encryption for regular languages, and more. In P. Q. Nguyen and E. Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 557–577. Springer, Heidelberg,
May 2014.

12. N. Attrapadung. Dual system encryption framework in prime-order groups via computational
pair encodings. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 591–623. Springer, Heidelberg, Dec. 2016.

13. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In
2007 IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society
Press, May 2007.

14. J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via predicate
encodings. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 595–624. Springer, Heidelberg, Apr. 2015.

15. J. Chen, J. Gong, L. Kowalczyk, and H. Wee. Unbounded ABE via bilinear entropy expan-
sion, revisited. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I, volume
10820 of LNCS, pages 503–534. Springer, Heidelberg, Apr. / May 2018.

16. C. Dwork. Differential privacy (invited paper). In M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener, editors, ICALP 2006, Part II, volume 4052 of LNCS, pages 1–12. Springer,
Heidelberg, July 2006.

17. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

18. R. Goyal, V. Koppula, and B. Waters. Semi-adaptive security and bundling functionalities
made generic and easy. In M. Hirt and A. D. Smith, editors, TCC 2016-B, Part II, volume
9986 of LNCS, pages 361–388. Springer, Heidelberg, Oct. / Nov. 2016.

19. L. Kowalczyk and A. B. Lewko. Bilinear entropy expansion from the decisional linear as-
sumption. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 524–541. Springer, Heidelberg, Aug. 2015.

25

20. A. B. Lewko. Tools for simulating features of composite order bilinear groups in the prime
order setting. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 318–335. Springer, Heidelberg, Apr. 2012.

21. A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In K. G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 547–567. Springer, Hei-
delberg, May 2011.

22. P. B. Miltersen, J. Radhakrishnan, and I. Wegener. On converting cnf to dnf. Theoretical
Computer Science, 347(1):325–335, 2005.

23. T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-based
encryption. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS,
pages 349–366. Springer, Heidelberg, Dec. 2012.

24. Y. Rouselakis and B. Waters. Practical constructions and new proof methods for large uni-
verse attribute-based encryption. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM
CCS 2013, pages 463–474. ACM Press, Nov. 2013.

25. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

26

