
In-app Cryptographically-Enforced Selective Access Control for Microsoft
Office and Similar Platforms

(Regular Paper)

Karim Eldefrawy1, Tancrede Lepoint2?, and Laura Tam1

1 SRI International
333 Ravenswood Ave, Menlo Park, CA 94025
{karim.eldefrawy,laura.tam}@sri.com

2 No affiliation
crypto@tancre.de

Abstract. The interplay between cryptography and access control has been widely investigated in the literature.
On the bright side, attribute-based encryption (ABE) has appeared as a major cryptographic tool going beyond
the all-or-nothing approach of public-key encryption by supporting fine-grained access control for encrypted data.
Unfortunately, the deployment and adoption of ABE have been slow, and few commercial widely-used products
use it to date. In particular, selective and fine-grained control over what is shared, and with whom, is absent from
common data products and formats, such as those generated by commercial products (Microsoft Word documents,
Excel spreadsheets, PowerPoint slides, and so on). This lack of selective and fine-grained control results in users
simply not sharing. This major usability shortcoming impacts defense and military coalition operations, as well as
commercial settings, such as life sciences, healthcare, and the financial sectors.
This paper addresses this identified usability problem head-on by proposing a cryptographically-enforced selective
access control in Microsoft Office products and similar platforms. We focus on Excel as an illustrative use-case, but
note that our work is applicable to (and is implemented for) other Microsoft products such as Word, PowerPoint,
and Outlook. Using the JavaScript API for Microsoft Office, we designed and developed simple add-ins that enable
cell encryption according to a policy, and requires a key that embeds attributes satisfying the policy in order to
decrypt. Our performance evaluation not only shows that cryptographic-based selective sharing of information in
widely-deployed and widely-used commercial authoring and collaboration platforms is possible, but also efficient.

1 Introduction

Private data sharing remains as of today a critical challenge for individuals, enterprises, and (inter)national organiza-
tions, and governments. While sharing data is essential, sharing sensitive data with the wrong entity can have devastat-
ing consequences or even be prohibited [2, Sec. 1201]. On the bright side, the literature is rich with cryptographically-
enforced access control solutions. A cryptographic tool that naturally lands itself to fine-grained access control is
that of attribute-based encryption (ABE) [25]. Here, ciphertexts and keys are associated with attributes which deter-
mine when decryption is possible. In a ciphertext-policy ABE (CP-ABE) [13], keys are associated with attributes
like ‘(continent = Europe) (trust = 2) (org = NATO)’, while ciphertexts are associated with ac-
cess policies such as ‘((continent == Europe) AND (org == NATO)) OR (trust > 3)’. Decryp-
tion is only possible when the key attributes satisfy the policy.

Using the previous example, note that the encrypter does not need to know the exact identities of all other entities
who should be able to access the data, but rather described them in term of descriptive attributes. Would they be issued
keys, countries like France, Italy, or Belgium would be able to decrypt, while Sweden or Finland would not (as they
are not members of NATO) unless their key embeds an attribute trust larger or equal to 4.

Over the past decade, ABE has led to a bounty of applications, from network privacy to health record access-control
and secure messaging. While companies like Zeutro [8] starts investigating the use of ABE in Cloud applications, to
date the deployment of ABE has been slow. This can be explained by a variety of reasons. Amongst them, (1) it became
clear that ABE schemes need to readily accommodate new roles, attributes, and access policies to be used; and (2)
? Work performed while at SRI International.

real-world applications of ABE require strong security guarantees under realistic and natural attack models. Thank-
fully, these initial concerns are no more. The first requirement has been achieved in 2011 by Lewko and Waters [21]
in what is called unbounded ABE (that is, an ABE that is not bounded in the number of attributes it can handle). Since
then, unbounded ABE constructions have been widely improved and made efficient [20,23,24,11,19,12,18,9,15]. As
for the security concern, recent ABE schemes are based on well-understood security assumptions against active adver-
saries [14,9,15], and rely on asymmetric prime-order (Type-III) pairings, the recommended choice by cryptography
experts [17].

Fine-grained access control today is not achieved by cryptographic means. When selective access control is avail-
able (e.g., the privacy controls proposed by Facebook, or even in online Excel workbooks [7]), it relies on a (replicated)
trusted centralized system that shares with a recipient the data she is authorized to see. To selectively share informa-
tion that is contained in the most used document formats without a centralized system (e.g., docx for text, jpeg
for images, xlsx for spreadsheets, or pptx for presentations), the commonly used process is to manually remove
sensitive information over multiple versions of the same file according to the recipient. In our extensive discussion
with military departments and agencies, we learned that Microsoft Office has become a de facto means of sharing
information between countries or agencies, and that the lack of selective access control within results in people simply
not sharing. This major usability shortcoming impacts DoD coalition operations. This problem is not restricted to
the defense setting: analogous problems can easily be identified in commercial settings. Additionally, both military
computers and company-owned computers are often subject to strict conditions or restrictions regarding the softwares
that can be installed and run.

Motivated by this state of affairs, this paper addresses the latter usability problem head-on, by showing that fine-
grained access control solutions can be made available and naturally used in widely-deployed products. This paper
introduces a Microsoft Excel add-in that enables cell encryption according to policies. The add-in is a single-page web
application written in JavaScript that interacts with the object models in Excel using the JavaScript API for Office [1].
A minimal locally hosted (dockerized) backend service 3, accessible through a REST API, enables to encrypt and
decrypt using a CP-ABE scheme. After encryption, the document remains a valid Excel document and can be opened
and read (without the encrypted cells) as any other xlsx document by any software. More precisely, the encrypted
cells are stored in an XML custom part of the xlsx document through the JavaScript API. When our add-in is loaded
from the Microsoft Excel software (or, e.g., from the Online Excel of Office 365) by a user in possession of a CP-ABE
key, all the cells with a policy satisfiable by the key attributes will be decrypted and displayed. Henceforth, the same
xlsx document can be shared with a wide audience while enabling selective access control at a cell level.

Organization: The outline of the paper is as follows. Section 2 introduces some necessary background on Mi-
crosoft Office add-ins and CP-ABE. Section 3 presents our Excel add-in, and a performance evaluation is presented in
Section 4. Section 5 discusses potential alternative options for short-term adoption of similar selective sharing func-
tionality based on standardized encryptions schemes but with some limitations. Finally, we conclude the paper and
discuss future work in section 6.

2 Preliminaries

This section provide some common background and notation on Office add-ins, ciphertext-policy attribute-based en-
cryption, and the Charm framework.

2.1 Microsoft Office Add-In

An Office add-in is a web application that is loaded from a browser inside of an Office application (desktop and online).
An add-in is not installed on the host, but has its implementation hosted on a web server. Add-ins can be added in an
Office application either by providing a XML manifest file (with the URL of the web application), or through the
Office store.

3 We note that such a backend service is just to simplify the development an experimentation, but in a production development,,
the entire encryption and decryption could/should be performed on the client-side in the add-in webpage itself via JavaScript.
We verified that this is possible and implemented it in later versions while writing this paper.

2

As with any web services, add-ins can access any web-based resources. Accessing and modifying information in
the Office document is made possible by referencing the office.js file containing the JavaScript API for Office [1].
The add-in logic is developed in JavaScript:

Office.initialize = function () {
// Office is ready
$(document).ready(function () {

// Implementation of add-in logic
});

};

Once initialized, an add-in can access data in the underlying application. For example, the code in Fig. 1 recovers the
content (the formulas) of the current selected cells in Excel.

Excel.run(function(ctx) {
var range = ctx.workbook.getSelectedRange();
range.load(’formulas’);
return ctx.sync().then(function() {

var content = range.formulas;
// Process the content

});
});

Fig. 1. Snippet of code to recover the content of a range of cells.

We refer to the official documentation for further detail on the Office add-in platform [3].

2.2 Access Structures

An access structure specifies the set of attributes required to gain access to some secrets.

Definition 2.1 (Access structure). Let U be a universe of attributes. An access structure A is a collection of non-
empty subsets of U . An access structure A is called monotone if, for every B ⊆ C ⊆ U , B ∈ A⇒ C ∈ A.

In this paper, we will define access control in terms of policies over attributes with AND and OR gates (cf. Sec-
tion 3.6), that are then converted into access structures to be used by the CP-ABE scheme.

2.3 Ciphertext-policy ABE

Let λ denote the target bit-security of the cryptographic scheme (a.k.a, the security parameter). A ciphertext-policy
ABE scheme CP-ABE = (Setup, Enc, KeyGen, Dec) is a tuple of probabilistic algorithms together with a message
spaceM that behave at follows:

– Setup takes as input the security parameter λ and outputs a public key pk and a master secret key msk.
– Enc takes as input the public key pk, a message m and an access structure A, and outputs a ciphertext c.
– KeyGen takes as input the master secret key msk and a set of attributes S, and outputs a secret key sk.
– Dec takes as input the public key pk, a ciphertext c and a secret key sk, and outputs m∗ or ⊥.

A CP-ABE scheme must satisfy the following correctness condition: for all m ∈ M, access structure A, and set
of attributes S ∈ A, it holds that

Pr

Dec(pk, c, sk) 6= m

∣∣∣∣∣∣
(pk,msk)← Setup(1λ)
c← Enc(pk,A,m)
sk← KeyGen(msk, S)

 ≤ negl(λ) ,

3

where a← A(b) denotes the output of the algorithm A when run on input b and negl(λ) denotes a negligible function,
i.e., a function which is smaller than the inverse of any polynomial for large enough values of λ.

In this paper, we only consider fully-secure CP-ABE schemes. We recall here the intuition, and refer to [9, Sec. 2.3]
for a formal definition. A CP-ABE scheme is fully-secure against chosen plaintext attacks if, at any time after the
deployment of the ABE scheme, no group of colluding users can distinguish between encryption of two messages of
their choice, under an access structure (a.k.a., a policy) of their choice, as long as no member of the group can decrypt
on their own.

2.4 Charm

Charm [10] is a framework for prototyping advanced cryptosystems based on Python. It uses an hybrid design: perfor-
mance intensive mathematical operations are implemented in native C modules, while cryptosystems themselves are
written in Python. In particular, Charm uses the Pairing-Based Cryptography Library [4] for elliptic-curve generation,
operations, and cryptographic pairing implementations.

The scheme we use in our system is FAME, a CP-ABE scheme proposed at CCS’2017 by Agrawal and Chase [9].
We use without modification the authors’ implementation of FAME (as incorporated into Charm).

3 The Excel Add-in

This section presents our Excel add-in and its workflows.

3.1 Setting

Our add-in assumes the existence of the following entities/services:

– An entity O, who will create CP-ABE parameters

(pk,msk)← Setup(1λ) .

O is the only entity knowing the master secret key msk, hence the only party that will be able to create secret keys
sk’s associated to sets of attributes.

– A web service W , which will be hosting the add-in web application (cf. Section 2.1). This service may or may not
be controlled by O.

– A service E (e.g., a web service accessible through a REST API), which will enable to encrypt with the CP-ABE
scheme. This service may be completely independent of O and W ; it only implements the Enc operation of the
CP-ABE scheme.

– A service D (e.g., a web service accessible through a REST API), which will enable to decrypt with the CP-ABE
scheme. This service may be completely independent of O, W and E; it only implements the Dec operation of
the CP-ABE scheme.

– n entities Pi’s that will be issued secret keys by O over time; these will receive a protected spreadsheet and use
the add-in to recover the information they are entitled to see.

Our add-in enables everyone (i.e., the above entities or anybody else) to create selectively protected spreadsheets.
In particular, it will enable to select cells and encrypt them according to policies. Therefore, our add-in only requires
to know which universe of attributes it should use to allow policy creation.

Additionally, in order to run the Enc and Dec algorithms, the services E and D need to know the public key pk. In
our evaluation (Section 4), we assume the public key to be embedded in the services E and D. An alternative option
could be for the add-in to be configured at load time with the public key and to send this public key along with the
message and policy (resp., with the ciphertext and the secret key) every time it asks for encryption (resp., decryption).

4

3.2 (Offline) Key Distribution

This key distribution is decoupled from the Excel add-in, and may be performed offline and out-of-band.
The entity O is the only entity that can issue secret keys sk’s. In the following, we assume that O issued and shared

one or more secret keys skij’s to each party Pi. Note that a key sk will be used to decrypt several spreadsheets over
time (as long as its attributes can decrypt cell policies).

In the following, we assume the skij’s are stored in (say) JSON files.

3.3 Spreadsheet Creation

As recalled above, anyone using the add-in may activate the privacy protection in an Excel spreadsheet.
The activation of the add-in follows the following workflow:

1. Display a page to enable the activation of the privacy protection. This page asks to create an administrative pass-
word (Fig. 2).

2. Upon submission of a password pa, apply the scrypt password-based key derivation function thereon to obtain
a key ka (our add-in uses the scrypt-async library [5]). (This administrative key will encrypt any administrative-
related data.)

3. Store a salted hash H(ka;na) of the key ka in the
Office.context.document.settings

object. The hash is computed using the TweetNaCl.js library [6]. This object is saved in the Excel document, and
will be accessible via any Excel application.

4. In order to enable cell encryption, a configuration file containing the list of all attributes needs to be loaded in the
add-in. An example of such file is provided in Figure 3.

5. Store the list of attributes encrypted under ka in the settings.

C
om

pu
te

k
a

(s
cr

yp
to

fp
as

sw
or

d)
.

Sa
ve

sa
lte

d
ha

sh
of

k
a

in
se

tt
in

gs
.

Fig. 2. Workflow to create a privacy-protected Excel spreadsheet. (The screenshots are anonymized for submission.)

At the end of the spreadsheet creation, the settings contain a hash (na, H(ka;na)) of the administrative key ka,
and the list of attributes encrypted under ka.

3.4 Encryption

In this subsection, assume a userU wants to add cell encryption in a xlsx document created as in Section 3.3. Figure 4
shows a screenshot of the add-in after encryption of three ranges of cells with two policies.

5

{
"Continent": ["Africa", "Antarctica", "Asia", "Australia", "Europe", "North America", "South

America"],
"Country": ["Canada", "China", "France", "Japan", "Russia", "UK"],
"Trust level": [1,2,3,4,5],
"Organization": ["BRICS", "G20", "G7", "NATO", "WTO"],

}

Fig. 3. An example of configuration file containing the list of all attributes.

Authentication In the current version of the add-in, we only enable cell encryption when U knows the administrative
password. This is not necessary and one may choose to remove this authentication step. Note that from Section 3.3,
only the attributes are stored in the settings; future work may include additional (encrypted) content in the settings,
which explains why we implemented this more general approach.

The workflow at load time is as follows:

1. Check the presence of a hash (na, H(ka;na)) in the settings. If defined, display a login screen.
2. Upon submission of a password pu by U , apply the scrypt password-based key derivation function thereon to

obtain a key ku (our add-in uses the scrypt-async library). If H(ku;na) = H(ka;na), decrypt the attributes from
the settings (if any) and populate the UI accordingly; if not, go back to Step 1.

Upon success of Step 2, U will be considered “authenticated”.

Encryption Assume U wants to encrypt a range of cells (say A1:B4) under a policy of her choice. U will select
the cells in the range (A1:B4) in Excel, will use the policy UI to create a policy (cf. Fig. 5), and will click on the
“Encrypt” button.

Upon click, the encryption workflow is as follows:

1. Get the content of the selected range (see Fig. 1 for an excerpt of our JavaScript code); without loss of generality,
we assume the content is a n×m matrix of strings C;4

2. Generate a random key kc (using TweetNaCl.js);
3. Encrypt every string C[i][j] with the secret key kc and obtain E[i][j] (using the TweetNaCl.js symmetric

encryption scheme);
4. Recover the policy as a string P from the UI;
5. Use the service E to encrypt kc under P and obtain a ciphertext c;
6. Store (c, {E[i][j]}i,j) in a custom XML part object in the document using the JavaScript API for Office.
7. Clear the content of the cells; e.g., our add-in replaces each of the C[i][j] by #N/A. We made this choice

because each formula including an encrypted cell will then automatically display #N/A (cf. Fig. 4).

Note that our add-in uses hybrid encryption (i.e., data encapsulation using symmetric encryption and a public key
encryption of the symmetric key), that is instead of encrypting each C[i][j] using the CP-ABE encryption scheme,
it generates a symmetric key kc, encrypt all the cells under kc using a symmetric encryption scheme, and encrypts
kc under the CP-ABE scheme (with the public parameters). The reason is threefold: (1) encrypting/decrypting under
a symmetric encryption scheme is much faster than encrypting/decrypting with the ABE scheme; (2) this enables to
perform cell encryption locally rather than sending the cell content to the external service E; and (3) when encrypting
with the ABE scheme, the ciphertext is significantly larger than the message (by several order of magnitudes), whereas
it remains of roughly the same size when using the symmetric encryption scheme. As such, as soon as we encrypt two
cells with the hybrid method, we are more efficient in time and space than encrypting both cells with the ABE scheme.
We provide concrete numbers in Table 2.

4 Note that in our add-in, we load the formulas of the cells, and not the displayed text values (Fig. 1). This enables to recover cell
inputs, such as "=SUM(A1:A10)", that compute over cell ranges, and hence to keep the dynamicity of the spreadsheet.

6

Fig. 4. Screenshot of the add-in after encrypting three ranges of cells: A4:C10 and A100:C128 are encrypted with a policy
(continent == Asia) (named “Asian countries” by the user), and E4:I10 is encrypted with a policy (trust > 5) OR
(population >= 60000000) (named “Trusted countries” by the user). Column J computes the sum of the values in the
columns E to I for each row; note that it outputs #N/A when the cells are encrypted. The chart display the cells in the range
A4:C12; note that only unencrypted values are visible in the chart.

As a side remark, note that most implementations using public-key cryptography today use a hybrid system. Ex-
amples include the TLS protocol, which uses a public-key mechanism for key exchange (such as Diffie–Hellman) and
a symmetric-key mechanism for data encapsulation (such as AES), OpenPGP and PKCS #7 (see discussion about
alternative approaches for achiving a subset of the functionality but would be viable in the short-term in section 5).

3.5 Decryption

In this subsection, assume a user Pu, who has been issued one or more secret keys skuv’s for attribute sets Suv’s by O,
gets access to a spreadsheet with several encrypted cells as in Section 3.4. At load time, the add-in checks the presence
of encrypted cells; if present, it displays a screen to drag and drop secret keys.

Upon drag of a key file corresponding to a CP-ABE secret key sk ∈ {skuv}v , the decryption workflow is as
follows:

1. For every group of encrypted cells as generated by Section 3.4, recover (c`, {E`[i][j]}i,j) from the custom
XML part object.

2. For every c`, use the service D to decrypt c` with sk, and obtain m` or ⊥.
3. When it decrypts correctly, define kc = m` and decrypt the cells E`[i][j] to recover C`[i][j].
4. Replace the content of the cell range by C`[i][j].

The CP-ABE scheme ensures that, if the attributes embedded in sk do not satisfy the policy associated to the
ciphertext c`, Pi cannot recover the corresponding symmetric key. The symmetric encryption scheme ensures that the

7

Fig. 5. Pop-up that enables creation of conjunctive normal forms policies, that is policies of the form (expr11 OR ... OR
expr1i) AND (expr21 OR ... OR expr2j) AND (expr31 OR ... OR expr3k).

content of the cells remains secret to anyone that would not know the symmetric key. An important benefit of the
hybrid approach is that the service D never gets to know the content of the cells either; instead decryption is done
locally within the application itself.

Finally, note that the ABE scheme is secure against collusions. For example, assume a cell is encrypted under the
policy

(continent == Asia) AND (continent == Europe).

Even if participant P1 (resp. P2) has the attribute continent == Asia (resp. continent == Europe), P1

and P2 together cannot combine their key to decrypt the ciphertext associated to the cell encryption, and therefore do
not learn the cleartext content the cell.5

3.6 Expressiveness of Policies

To increase usability of our add-in, we developed a policy creation UI (Fig. 5) that allows a user to easily create
policies, eventually expressible as Boolean expressions6 with operators AND and OR of predicates of the form

name == value

for string values, and
name == value
name >= value
name > value
name <= value
name < value

(1)

for numerical values.
For example, this allows the creation of policies of the form:

5 Note that this policy makes sense; e.g., Russia or Turkey could be potential intended recipients of such a policy.
6 More precisely, it allows the creation of conjunctive normal forms (CNF).

8

((continent == Europe) OR (trust >= 3)) AND (org == NATO) AND (key valid until
> 1518523199),

to share data with a trusted country or a European country, part of the NATO organization, with a valid key. Indeed, the
last predicate of the above policy allows for key revocation by including a numerical attribute key value until in
the keys, as proposed in [13, Sec. 4.3].

Attributes in the Keys Recall that at key generation time, CP-ABE schemes take as input a set of attributes S. In our
add-in, attributes in the keys are specified by name/value:

name = value.

When value is a string, we add to the set S the string "name:value". When value is a k-bit number, we use
a simple trick (already mentioned in [13, Sec. 4.3]) that decomposes the number into its bits, adding the k (string)
attributes to the set S:

"name:vk−1**· · ·***"
...

"name:***· · ·*v1*"
"name:***· · ·**v0"

where value =
∑k
i=0 vi · 2i, vi ∈ {0, 1}.

Policies in Ciphertexts Recall that at encryption time, CP-ABE schemes take as input access structures rather than a
policy string; we therefore use the Charm policy parser [10] to convert our policies. Unfortunately, while the current
policy parser of Charm explicitly parses7 the predicates for numerical values of Eq. (1), any such predicate is replaced
by the string name and disregards the value altogether (see the culprit function8 on Fig. 6).

convert ’attr < value’ to a binary tree based on ’or’ and ’and’
def parseNumConditional(s, loc, toks):

print("print: %s" % toks)
return BinNode(toks[0])

Fig. 6. Extract from the charm/charm/toolbox/policytree.py file in Charm that does not handle correctly numerical
predicates. toks is a list containing three strings: the name, the operator, and the value.

In our add-in, we modified the Charm policy parser to handle the predicates of Eq. (1). Using again the bit decom-
position of value =

∑k
i=0 vi · 2i, vi ∈ {0, 1}, we use a simple tree implementing the operator (see Fig. 7 or [13,

Fig. 1]) using the AND and OR operators.

Number of Bits An important shortcoming of the approach described in Section 3.6 is that one has to be careful
with the expected length of the numerical values. Indeed, assume that name = 16; the transformation of Section 3.6
yields that the key attributes set contains

name:1****
name:*0***
name:**0**
name:***0*
name:****0

7 https://github.com/JHUISI/charm/blob/dev/charm/toolbox/policytree.py#L52
8 https://github.com/JHUISI/charm/blob/dev/charm/toolbox/policytree.py#L20

9

AND

"name:1***" OR

"name:*1**" AND

"name:**1*" "name:***1"

Fig. 7. Tree implementing the attribute name >= 11. The Boolean expression derived from the tree evaluates to true when the
key contains either (a) "name:1***" and "name:*1**"; or (b) "name:1***", "name:**1*" and "name:***1"; case
(a) captures name ≥ 12 and case (b) captures name ∈ {11, 15}.

The key would therefore not decrypt a ciphertext encrypted under the policy of Fig. 7 (while it should).
In our implementation, we enable specifying the number of bits of numerical attributes, defaulting to 32-bit num-

bers for usability. An important caveat of defaulting to 32 bits is each tree policies may contain up to 32 attributes,
which impacts the performance of the online encryption with the CP-ABE scheme (see Table 1).

Number of bits of the numerical values of the attributes 4 8 12 16 20 24 28 32

KeyGen (attributes: a = k) 31ms 54ms 77ms 100ms 123ms 146ms 168ms 191ms

Enc (policy: a == k) 27ms 50ms 74ms 97ms 121ms 144ms 168ms 191ms
Dec 26ms 26ms 26ms 27ms 27ms 27ms 27ms 27ms

Enc (policy: a <= n) 28ms 51ms 75ms 98ms 119ms 142ms 165ms 186ms
Dec 26ms 26ms 26ms 26ms 26ms 26ms 26ms 26ms

Enc (policy: a < m) 23ms 45ms 70ms 82ms 99ms 134ms 160ms 184ms
Dec 26ms 26ms 26ms 26ms 26ms 26ms 26ms 26ms
Table 1. Average performances of the KeyGen, Enc, and Dec operations where the ciphertext is associated to a policy a == k
(resp., a <= n, resp. a < m) and the key is associated to an attribute a = k, for N -bit integers k, n,m and k ≤ n and k < m.
The CP-ABE scheme is FAME instantiated in the Charm framework on a Intel Pentium CPU G4400 at 3.30GHz.

4 Evaluation and Performances

Choice of CP-ABE. As mentioned in the introduction, efficient and unbounded CP-ABE schemes based on well-esta-
blished security assumptions have been proposed recently. In our add-in, we use the FAME CP-ABE scheme over the
MNT224 curve introduced at CCS’2017 by Agrawal and Chase [9]. As far as we know, FAME is the most efficient CP-
ABE scheme today (at the time of developing the add-ins and writing of this paper) for the encryption and decryption
operations [9, Sec. 5].

Docker-Compose. Our test environment runs three Docker containers: a nginx:latest container that serves the
add-in web page (the web service W), a python:latest container accessible through a REST API to access the
services E and D, and finally a nginx:latest proxy container that listens on port 443 and redirects either to the
add-in or to the backend. The Python container uses the FAME implementation of the Charm framework [10] for
CP-ABE encryption and decryption.

Environment. The host is a MacBook Air (Late 2014) running macOS High Sierra 10.13.3 with a 1.7 GHz Intel Core
i7. The version of the Docker engine is 17.12.0-ce and the version of Excel is 16.9 (180116).

10

of cells 1 10 100 1 , 000 10 , 000

Encryption with policy P-I 150ms 150ms 163ms 181ms 580ms
Encryption with policy P-II 397ms 407ms 416ms 421ms 837ms
Encryption with policy P-III 386ms 394ms 410ms 418ms 848ms
Encryption with policy P-IV 1 , 410ms 1 , 417ms 1 , 423ms 1 , 434ms 1 , 614ms

Table 2. Benchmark of the encryption workflow (Section 3.4) according to different policies, on 1 to 10 , 000 cells.

Easy-to-use. Our add-in is very easy to use; it only requires a user to install the add-in (e.g., via the integrated add-in
store) and to specify the attributes that will be used to construct the encryption policies (e.g., using a configuration
file). In particular, it does not modify Excel in any way and does not require additional software to be installed on the
machine.

4.1 Encryption

Setting. We start from 5 xlsx documents, containing respectively 1, 10, 100, 1 000, and 10 000 cells with value #N/A.
We report the time to encrypt those cells against four policies (see below), and the size of the resulting documents.
Note that our baseline documents contains #N/A as text because, in Step 7 of our encryption workflow, we clear the
cells by replacing their content by #N/A: keeping the same content displayed in the cells enables us to measure as
accurately as possible the size overhead due to the encryption.9

Policies. We measure the performances of our encryption workflow with four policies.

P-I: (name == value);
The first policy is a simple policy that checks the presence of one attribute name = value, where value is a
string, in the secret key. This is the simplest policy that can be defined.

P-II: (name == n) where n is a 32-bit number;
The second policy is a policy that checks that the key has been created for (name = n). Recall from Section 3.6
that the key will contain 32 attributes of the form name:***b*** where b ∈ {0, 1} and a varying number of *.
The policy checks equality, i.e., checks that the key contains all the aforementioned attributes.

P-III: ((name1 == value1) OR (name2 == value2)) AND
(name3 > n) where n is a 32-bit number;
The third policy has the form of a policy created by our UI (Fig. 5). To enable decryption, a key needs to contain
at least 33 attributes (the 32 attributes for the numeral values, and at least one attribute of name1 == value1
or name2 == value2). Recall from Section 3.6 that the policy is a tree with up to 33 leafs.

P-IV: ((name1 == n1) OR (name2 == n2) OR (name3 == n3) OR (name4 == n4))
AND (name5 > n5), where ni, i ∈ {1, . . . , 5} are 32-bit numbers;

The fourth policy is a “bad” policy, in the sense that it yields a Boolean formula with up to 5×32 = 160 predicates.
As we will see, this yields a large ciphertext and impacts the encryption time.

Timings. Table 2 reports benchmarks for the encryption workflow (Section 3.4), that is the time it takes from the
moment a user clicks ‘Encrypt’ and the moment the content of the cells is cleared (Step 7).

These timings illustrate the interest of hybrid encryption (Section 3.4): encrypting 1 or 1 000 cells takes approxi-
mately the same time. These timings also show that such an add-in is usable: encrypting 10 , 000 cells with a complex
policy (i.e., that involves a lot of attributes) takes about 1.5s when using Python in a Docker container on a standard
laptop. Significant gains are to be expected by running an efficient implementation of the CP-ABE scheme natively on
a server.
Size. Figure 8 reports the sizes of the xlsx documents after encrypting 1 to 10 000 cells according to the above
policies. (Note that the x axis is logarithmic.)

9 Obviously, the longer the text in the cells, the larger the documents will be. We use the default secret-key authenticated encryption
of TweetNaCl.js (XSalsa20-Poly1305); hence the size of each ciphertext is 16 bytes longer than the original message.

11

100 101 102 103 104

20

40

60

80

100

Number of cells

kB

Baseline P-I P-II P-III P-IV

Fig. 8. Plot of the size of the xlsx documents after encrypting 1 to 10 , 000 cells according to policies P-I to P-IV.

This figure shows that, as expected from the workflow of Section 3.4, there is a one-time size increase correspond-
ing to the encryption of the key under the CP-ABE scheme (difference at the leftmost of the plot between the baseline
size and the sizes after encrypting one cell), and then a small overhead corresponding to the encryption of the cells.
This overhead grows linearly with the number of cells encrypted. It follows that encrypting 10 , 000 cells according to
the complex policy P-IV only increases the document size by about 60kB.

4.2 Decryption

As shown on Table 1, regardless of the policy, the decryption time is very efficient. Indeed, decrypting requires to
compute 6 cryptographic pairings (bilinear maps) over elliptic curves, 6 multiplications in the target group, and 6I+3
multiplications in the input group, where I is the number of attributes used in decryption. Since multiplying in the
input group is three order of magnitude faster than computing a pairing (cf. [9, Table 5.1]), the decryption time is
nearly independent of the number of attributes involved. Therefore, the execution time of the decryption workflow
(Section 3.5) amounts to the asynchronous execution of the JavaScript in the browser within the Excel software (plus
network communication). In Table 3 we report average time (over 10 runs) to decrypt 100 to 1 , 000 cells, encrypted
as 10 sets of 100 cells according to random policies of the form P-I, P-II, P-III, and P-IV. These timings show that
our (unoptimized) implementation already achieves good performance.

Number of cells that can be decrypted Average time

1 · 100 1 , 082ms
3 · 100 1 , 295ms
6 · 100 1 , 668ms
10 · 100 1 , 851ms
Table 3. Benchmark of the decryption workflow (Section 3.5) on 10 sets of 100 encrypted cells according to a random policy of
the form P-I, P-II, P-III, and P-IV.

12

5 Short-term Adoption: Policy-based Encryption without Collusion-Resistance via
Multi-key Hybrid Encryption (Using Standardized Schemes)

The deployment of ABE in production systems, e.g., in government and commercial applications, remains limited.
Currently, to the best of our knowledge, no widely deployed commercial authoring software platforms and products
use ABE. The root cause of this (in the USA) may be because ABE has not been standardized yet by well known
standardization bodies that develop, endorse, and maintain such national and international standards, e.g., the National
Institute for Standards and Technology (NIST) in the USA. While ABE has not (yet) been standardized in the USA,
there are recent efforts in that direction by the European Telecommunications Standards Institute (ETSI)10.

Developing new cryptographic standards is a process that takes several years (as it should) due to its complexity
and importance as illustrated by the ongoing11 NIST effort to standardize post-quantum cryptography (PQC). While
we acknowledge that standardizing PQC is a much larger and challenging effort compared to standardizing ABE,
nevertheless, we do not expect any long-term standard to be initiated, completed, and then ratified in the next two to
three years, especially if one considers a timelines similar to standardizing PQC.

A natural question then becomes “is there a way to only utilize standard public-key/asymmetric and symmetric
schemes and emulate most of the functionality and guarantees provided by ABE in some settings?”. We sketch here
a potential approach that we argue works in many enterprise settings. We stress that this is an informal treatment
to argue that short-term secure selective sharing solutions may be designed and deployed, building upon the in-app
cryptographically-enforced framework developed in this paper, until ABE is standardized and ready for commercial
wide-scale adoption. Specifically, we focus on settings where one is not concerned about a built-in technical solution
to collusion-resistance from users and insiders in the enterprise. For example, if the policy is encrypting to multiple
parties, where each party by itself should be able to decrypt (i.e., an OR clause), then there is no potential (nor reason)
for collusion between parties. There are a lot of settings and application where an encrypted object should be restricted
to a group of employees in the enterprise, and each of them alone can, and should be able to, decrypt.
Representing Encryption Policies in Disjunctive Normal Form (DNF). While in the ABE case, policies were
expressed in Conjunctive Normal Form (CNF) form (see Section 3.6), one can easily convert a policy into a DNF
form. Whether CNF of DNF representations is preferable will depend on the application. Some functions can be
succinctly represented in DNF whereas others are represented more succinctly in CNF; switching between these
representations can involve an exponential increase in size [22]. We outline below techniques to use (standardized)
public-key/asymmetric encryption schemes in a blackbox manner to realize AND and OR clauses. It will be up to
the application to decide how to combine these into encryptions that represent DNF or CNF. It is important to stress
that this encryption is only used to wrap a random short symmetric key (e.g., an AES key) as typically used in hybrid
encryption.
Encrypting to OR Clauses. The approach to encrypt an OR clause is to encrypt the symmetric key k used to encrypt
the data object (m) with different public-keys, where each public-key corresponds to an attribute in the clause. For
example, if the clause is a1 OR a2 OR a3, where ai corresponds to pki, then an encryption of data m and symmetric
key k for such a clause would be {Ea1pk1(k)||E

a2
pk2

(k)||Ea3pk3(k)||E
s
k(m)}, where || denotes concatenation and Eaipki(.)

denotes public-key/asymmetric encryption with key pki for attribute ai, and Esk(.) denotes symmetric key encryption
with key s.
Encrypting to AND Clauses. There are two typical approaches to perform an encryption of an AND clause.

The first approach uses nested re-encryption, it performs sequential re-encryption of the symmetric key k and
ciphertexts resulting from encrypting it under the different public-keys corresponding attributes in the AND clause.
For example, if the AND clause is a1 AND a2 AND a3, where ai corresponds to pki, then encryption of data m with
symmetric key k for such a clause would be {Ea3pk3(E

a2
pk2

(Ea1pk1(k)))||E
s
k(m)}.

The second approach is to use additive (or another forms if t-out-of-n decryption is required) secret sharing of the
symmetric key k to be encrypted, and then encrypt each share under different public keys. For example, if the AND
clause is a1 AND a2 AND a3, where ai corresponds to pki, then encryption of data m with symmetric key k for such
a clause would be {Eapk1([k]1)||E

a
pk2

([k]2)||Eapk3([k]3)||E
s
k(m)}, where [k]i is share i of the key k.

10 https://www.etsi.org/newsroom/press-releases/1328-2018-08-press-etsi-releases-
cryptographic-standards-for-secure-access-control

11 https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline

13

The trade-off offered by the two approaches above is easy to see: the first approach requires less space but encryp-
tion and decryption cannot be parallelized, while in the second approach encryption and decryption can be parallelized,
but would require more space.

Security. Given that the actual data is encrypted using a standard symmetric authenticated encryption scheme (e.g., the
AES-GCM authenticated encryption scheme) with a random key k, the data confidentiality is ensured when k remains
secret. We argue below security of the key encapsulation mechanism (KEM) used to encrypt k for both an AND clause
and an OR clause.

Security of an AND clause: The key k can be secret shared into l shares depending on the number of l literals/at-
tributes in the AND clause. Due to the properties of secret sharing, each share of k ([k]i) by itself will be a random
string. Each [k]i will then be encrypted independently via the (asymmetric) public-key encryption scheme (Eaipki(.))
and a different public-key pki. It is easy to argue by contradiction that, if such a construction is insecure, then a sin-
gle application of the underlying Eaipki(.) is insecure because one could always concatenate a single such encryption
with other encryptions of random messages for random public-keys and pass them to an adversary that breaks such a
concatenation produced from an AND clause, thus resulting in a break of the underlying encryption scheme.

Security of an OR clause: We note that the encryption of an OR clause is essentially a multi-receiver KEM encrypt-
ing a random symmetric key used in a data encapsulation mechanism (DEM) approach. This is the approach utilized
in encrypting email in well used protocols such as S/MIME12. A formal security treatment of this approach is outside
the scope of this paper, but we report here informally the essence of why this approach is secure. If one can break
the multi-receiver use of an appropriately chosen CCA-secure public-key encryption used as a KEM mechanism (with
different public-keys), then one can devise a reduction from the multi-receiver KEM used above to a single receiver
KEM and thus break the security of the underlying. The reduction would generate several ciphertexts of 0 and 1 and
pair them with the two given challenge encryptions, and pass them to the multi-receiver KEM adversary to break the
ones it could and then use this break to distinguish the two challenge encryptions.

Performance Overhead. We give below a high-level estimate of the encryption/decryption delay and computational
overhead involved therein. We also assess the space overhead in the proposed approach.

Computational Overhead and Delay from Decryption: Assuming policies in DNF form with less than 10 OR
clauses, each containing less than 10 attributes combined via an AND clause, one would have to do at most 100
public-key encryptions. As a rule of thumb, a typical public-key encryption is on the order of (or less than) one msec
so such encryptions and decryptions will require less than a second. We note that while opening a large MS Office
document is fast, it still is a bit perceptible to the user, i.e., not instant and may take a fraction of a second or even a
full second. We argue that extending this by several hundred msec will be almost imperceptible to users. Finally, note
that the encryptions and decryptions corresponding to the OR clauses are independent and can be easily performed in
parallel. Encryptions and decrytions corresponding to AND clauses can also be parallelized if the secret sharing based
technique described above is utilized.

Increase in File Size: The space overhead for the encryption of the actual data object is minimal as it is encrypted
only once using a symmetric encryption scheme (e.g., AES) and a randomly generated key. The random symmetric
key is then encrypted via public key several times to satisfy a policy that will at least contain two OR clauses, one
for the originator of the encryption and one for the recipient of that encrypted data field. (We note though that it is
likely that in enterprise settings, an additional OR clause may be added to the policy so that central IT (or similar
organizations) can recover encrypted content belonging to the enterprise if employees thereof leave. This clause may
be such that the symmetric key is secret shared and each share is encrypted with a different key belonging to different
entities in the enterprise’ IT or security departments.)

Limitations: One obvious limitation of this approach outlined above is that it only works for small policies, e.g.,
with a small number of clauses each with a few attributes. This approach also provides no collision resistance for
AND clauses, but we argue that if each policy only has one AND clause corresponding to the recovery term described
above, then it may be acceptable as if individuals high up and with significant privilege are acting malicious they
could override policies and/or recover sensitive data through other means. The approach exhibits a linear overhead
in the encryption size in the number of OR clauses and will require multiple public-key operations for encryption

12 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-49.pdf

14

and decryption, but such computationally expensive operations can be easily parallelized when both encrypting and
decrypting.

6 Conclusion and Future Work

This paper investigates and addresses a major usability hurdle: the lack of selective fine-grained access control in
widely deployed enterprise products, and in particular in Microsoft Office products which are a de facto authoring
means and often used to share information in government and private settings. More precisely, we present a user
friendly way to achieve selective fine-grained protection of information in Excel by developing an Excel add-in, using
the JavaScript API for Office. Our add-in brings the benefits of attribute-based encryption within spreadsheets. Using
hybrid encryption, we show that it is possible to encrypt the cells’ content locally, and minimize the size of the over-
head due to encryption. Our add-in interacts with the state-of-the-art CP-ABE encryption scheme FAME (proposed at
CCS’2017) and offers good performance and usability in our test environment.

Future Work. This paper is only the first step in a promising journey bringing ABE to widely used enterprise
software products. An immediate next step will be to extend the current functionality to other products of the Office
suite, such as PowerPoint. While similar add-ins and extensions to Word and Outlook have also been developed, the
current API for PowerPoint seems more limited. This paper motivates extensions to the JavaScript API to enable
fine-grained modifications in all Office applications. Furthermore, it is likely that a similar approach is possible to
implement for Google Workplace/Suite applications (e.g., Google Docs, Google Spreadsheet), for which we have
preliminary implementations proving the viability of developing similar add-ins. Contrary to the JavaScript API for
Office, the Google add-ins framework only allows execution of server-side JavaScript code, which is a significant
technical hurdle if data being encrypted (and keys) cannot (and should not) be exposed to cloud providers. We also
envision developing add-ins for different web-browsers (e.g., to perform selective sharing/revealing of the content
of a webpage and/or web-based applications) and add-ins for GMail. Future work could also investigate developing
extension of the add-in(s) to support differential privacy [16].

7 Acknowledgments

The authors thank Tim Ellis, Ron Moore, and Karen Myers for helpful discussions and suggestions. This material
is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval
Warfare Systems Center, Pacific (SSC Pacific) under Contract No. N66001-15-C-4071. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of DARPA or SSC Pacific. This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be
interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

References

1. Javascript API for Office. https://dev.office.com/reference/add-ins/javascript-api-for-office.
2. National Defense Authorization Act for the fiscal year 2000. https://www.congress.gov/106/plaws/publ65/

PLAW-106publ65.pdf.
3. Office add-ins platform overview. https://docs.microsoft.com/en-us/office/dev/add-ins/overview/

office-add-ins.
4. PBC library. https://crypto.stanford.edu/pbc/.
5. scrypt-async. https://github.com/dchest/scrypt-async-js.
6. TweetNaCl.js. https://tweetnacl.js.org/.
7. Using Excel services to share pieces and parts of Excel workbooks. https://support.office.com/en-

us/article/using-excel-services-to-share-pieces-and-parts-of-excel-workbooks-
c9630a25-4c0a-43aa-8a93-510adb17b550.

8. Zeutro LLC. http://www.zeutro.com.

15

9. S. Agrawal and M. Chase. FAME: Fast attribute-based message encryption. In B. M. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, editors, ACM CCS 2017, pages 665–682. ACM Press, Oct. / Nov. 2017.

10. J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green, and A. D. Rubin. Charm: a framework for
rapidly prototyping cryptosystems. Journal of Cryptographic Engineering, 3(2):111–128, 2013. https://github.com/
JHUISI/charm.

11. N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully secure functional encryption for
regular languages, and more. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
557–577. Springer, Heidelberg, May 2014.

12. N. Attrapadung. Dual system encryption framework in prime-order groups via computational pair encodings. In J. H. Cheon
and T. Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 591–623. Springer, Heidelberg, Dec. 2016.

13. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In 2007 IEEE Symposium on Security
and Privacy, pages 321–334. IEEE Computer Society Press, May 2007.

14. J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via predicate encodings. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624. Springer, Heidelberg, Apr. 2015.

15. J. Chen, J. Gong, L. Kowalczyk, and H. Wee. Unbounded ABE via bilinear entropy expansion, revisited. In J. B. Nielsen
and V. Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 503–534. Springer, Heidelberg, Apr. / May
2018.

16. C. Dwork. Differential privacy (invited paper). In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, ICALP 2006,
Part II, volume 4052 of LNCS, pages 1–12. Springer, Heidelberg, July 2006.

17. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied Mathematics, 156(16):3113–
3121, 2008.

18. R. Goyal, V. Koppula, and B. Waters. Semi-adaptive security and bundling functionalities made generic and easy. In M. Hirt
and A. D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 361–388. Springer, Heidelberg, Oct. / Nov. 2016.

19. L. Kowalczyk and A. B. Lewko. Bilinear entropy expansion from the decisional linear assumption. In R. Gennaro and M. J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 524–541. Springer, Heidelberg, Aug. 2015.

20. A. B. Lewko. Tools for simulating features of composite order bilinear groups in the prime order setting. In D. Pointcheval
and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 318–335. Springer, Heidelberg, Apr. 2012.

21. A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In K. G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 547–567. Springer, Heidelberg, May 2011.

22. P. B. Miltersen, J. Radhakrishnan, and I. Wegener. On converting cnf to dnf. Theoretical Computer Science, 347(1):325–335,
2005.

23. T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-based encryption. In X. Wang and K. Sako,
editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 349–366. Springer, Heidelberg, Dec. 2012.

24. Y. Rouselakis and B. Waters. Practical constructions and new proof methods for large universe attribute-based encryption. In
A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 2013, pages 463–474. ACM Press, Nov. 2013.

25. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 457–473. Springer, Heidelberg, May 2005.

16

